Varta propone algunas recomendaciones al realizar montajes y manipulaciones de baterías.

Varta, la marca de baterías de Clarios, proporciona unas recomendaciones y advertencias de seguridad con respecto al montaje y la manipulación de baterías.
A la hora de montar y manipular baterías, es importante garantizar su seguridad y la de sus compañeros siguiendo todas las recomendaciones y advertencias de seguridad que figuran a continuación.
Peligro de explosión de baterías
Las baterías contienen ácido sulfúrico y producen mezclas explosivas de hidrógeno y oxígeno. Debido a que en la autodescarga se genera concentración de hidrógeno incluso cuando la batería no está en funcionamiento, compruebe que las baterías se almacenan y se manipulan en una zona con buena ventilación.
Cuando se trabaja con una batería o en sus proximidades, se deben llevar en todo momento gafas de seguridad y protector facial o gafas de protección contra salpicaduras según la norma ANSI Z87.1 (para Estados Unidos) o CE EN166 (para Europa).
Utilice en todo momento protección adecuada para los ojos, la cara y las manos.
Nunca intente abrir una batería con tapones de ventilación no extraíbles.
Mantenga los tapones de ventilación extraíbles apretados y a nivel, excepto cuando se estén realizando trabajos de servicio en el electrolito.
Nunca se incline sobre una batería mientras se esté puenteando, comprobando o cargando.
Asegúrese de que la zona está bien ventilada.
Tenga especial cuidado cuando trabaje con herramientas o conductores metálicos para evitar que se produzcan cortocircuitos o chispas.
Carga segura
Nunca intente cargar una batería sin leer antes las instrucciones del cargador que vaya a utilizar. Además de las instrucciones del fabricante del cargador, también debe tener en cuenta las siguientes precauciones generales de seguridad:
Utilice en todo momento protección adecuada para los ojos, la cara y las manos.
Cargue las baterías siempre en un lugar con buena ventilación.
Mantenga los tapones de ventilación apretados y a nivel.
Apague el cargador y el temporizador antes de conectar los cables a la batería para evitar que salten chispas.
Nunca intente cargar una batería visiblemente dañada o congelada.
Conecte los cables del cargador a la batería; el cable rojo positivo (+) con el polo positivo (+), y el cable negro negativo (-) con el polo negativo (-). Si la batería aún está en el vehículo, conecte el cable negativo al bloque del motor para que sirva como masa. Compruebe que el encendido y todos los accesorios eléctricos estén apagados. (Si el vehículo tiene una masa positiva, conecte el cable positivo al bloque del motor).
Compruebe que los cables que van del cargador a la batería no estén rotos, pelados ni sueltos.
Active el temporizador, encienda el cargador e incremente lentamente el valor de carga hasta alcanzar el valor de amperios deseado.
Si la batería se calienta, o si el electrolito expulsa gases de forma violenta, reduzca la intensidad de carga o apague temporalmente el cargador.
Apague siempre el cargador antes de retirar los cables de la batería para evitar que salten chispas.
Manipulación del ácido de las baterías
El ácido de la batería, o electrolito, es una solución de ácido sulfúrico y agua que puede destruir la ropa y producir quemaduras en la piel. Extreme la precaución cuando maneje el electrolito, y mantenga a mano en todo momento una solución neutralizadora del ácido, como bicarbonato sódico o amoniaco de uso doméstico mezclado con agua. Cuando manipule baterías:
Utilice en todo momento protección adecuada para los ojos, la cara y las manos.
Si el electrolito salpica sobre un ojo, ábralo por la fuerza y enjuáguelo con agua limpia y fresca durante al menos 15 minutos. Además, acuda inmediatamente a un médico.
Si se ingiere electrolito, beba grandes cantidades de agua o de leche. NO induzca el vómito. Además, acuda inmediatamente a un médico.
Si cae electrolito sobre el vehículo o en la zona de trabajo, neutralícelo con bicarbonato sódico. Tras neutralizarlo, lave con agua la zona contaminada. Para preparar electrolito de una gravedad específica, vierta lentamente ácido concentrado en el agua: NO vierta agua en el ácido. Remueva el agua continuamente mientras añade pequeñas cantidades de ácido. Si se produce un calor apreciable, espere a que se enfríe la solución antes de seguir añadiendo ácido.
Fuente: La Comunidad del Taller
Ante cualquier duda contacta con nosotros y el equipo de expertos te aconsejará la mejor opción para tu vehículo.
ALJOCAR es distribuidor de baterías Varta y ASER para León.

El aire acondicionado automotriz mantiene el habitáculo fresco, seco y confortable, regulando la temperatura y eliminando la humedad. Su funcionamiento se basa en un ciclo cerrado de compresión y expansión del gas refrigerante. ⚙️ Componentes principales Compresor: comprime el gas refrigerante y lo envía a presión hacia el condensador. Condensador: enfría el gas caliente y lo convierte en líquido. Válvula de expansión térmica: regula el paso del refrigerante líquido hacia el evaporador. Evaporador: absorbe el calor del aire del habitáculo, generando aire frío. Bulbo sensor: controla la temperatura para evitar congelamiento. Ventilador: impulsa el aire frío dentro del coche. ⚠️ Posibles fallos comunes ✔️ Pérdida de gas refrigerante por fugas. ✔️ Compresor averiado o con falta de lubricación. ✔️ Condensador obstruido con suciedad. ✔️ Válvula de expansión bloqueada. ✔️ Evaporador húmedo que provoca malos olores. 🔧 Soluciones y recomendaciones ✔️ Revisar y sellar fugas en las líneas de refrigerante. ✔️ Realizar mantenimiento al compresor y al condensador. ✔️ Cambiar el filtro de habitáculo regularmente. ✔️ Cargar gas refrigerante con equipo especializado. ✔️ Mantener limpio el sistema para evitar humedad y hongos. 💡 Dato curioso El sistema de aire acondicionado no solo enfría: en climas fríos ayuda a desempañar los cristales en segundos, garantizando mayor seguridad en la conducción. 👀❄️

🚗 Tipos de Humo en el Escape y qué significa cada uno ⚠️ El humo que sale del escape es un síntoma directo del estado del motor. Su color y densidad pueden indicar desde un problema menor hasta una avería grave. ⚙️ Tipos de humo y su diagnóstico Humo blanco fino ☁️ 🔹 Normal en arranques en frío. 🔹 Puede indicar condensación de vapor de agua. Humo blanco espeso ❄️ 🔹 Señal de que el motor está quemando refrigerante. 🔹 Generalmente causado por una junta de culata dañada o fisuras en el bloque. Humo azul 🔵 🔹 Indica quema de aceite dentro de la cámara de combustión. 🔹 Puede deberse a anillos de pistón gastados, sellos de válvulas dañados o guía de válvulas con fuga. Humo negro ⚫ 🔹 Indica una mezcla de combustible demasiado rica (exceso de gasolina o diésel). 🔹 Relacionado con inyectores defectuosos, filtro de aire sucio o sensores MAF/MAP dañados. ⚠️ Posibles consecuencias ✔️ Pérdida de potencia. ✔️ Aumento en el consumo de combustible y aceite. ✔️ Sobrecalentamiento y daños graves en el motor. ✔️ Fallo en la prueba de emisiones contaminantes. 🔧 Soluciones y recomendaciones ✔️ Revisar estado de la junta de culata si hay humo blanco espeso. ✔️ Sustituir sellos de válvulas o anillos de pistón si hay humo azul. ✔️ Limpiar o reemplazar inyectores y filtros si aparece humo negro. ✔️ No ignorar cambios en el humo, ya que es la “alarma visual” del motor. 💡 Dato curioso Un motor en buen estado no debería producir humo visible en condiciones normales, excepto un poco de vapor al encender en frío.

El sistema de embrague hidráulico reemplaza los cables mecánicos por un circuito de fluido a presión, logrando un accionamiento más suave, preciso y duradero. Es muy común en vehículos modernos por su fiabilidad y menor desgaste. 🔹 Componentes principales: ✔️ Pedal del embrague → inicia el proceso al ser presionado por el conductor. ✔️ Cilindro maestro → transforma la fuerza mecánica del pedal en presión hidráulica. ✔️ Depósito de líquido → almacena el fluido especial para embrague/frenos. ✔️ Cilindro esclavo → recibe la presión y empuja la horquilla de desembrague. ✔️ Horquilla de desembrague → transmite el movimiento al cojinete. ✔️ Cojinete de desembrague → desacopla el disco del embrague del volante motor. ⚡ Ventajas del sistema hidráulico: ✔️ Menor esfuerzo al pisar el pedal. ✔️ Desgaste más uniforme y menos mantenimiento. ✔️ Mayor precisión en el acoplamiento del embrague. ✔️ Respuesta más rápida y confiable. ⚠️ Síntomas de fallos comunes: Pedal de embrague esponjoso o muy duro 🦶. Dificultad para meter los cambios 🚨. Pérdida de líquido hidráulico o manchas en el suelo 💧. Ruidos metálicos al desembragar 🔊. 🛠️ Posibles soluciones: ✔️ Revisar el nivel de líquido en el depósito. ✔️ Purgar el sistema para eliminar aire en las líneas. ✔️ Sustituir cilindro maestro/esclavo si hay fugas. ✔️ Revisar y reemplazar el cojinete de desembrague en caso de ruido. 💡 Dato curioso : El embrague hidráulico funciona con un principio muy similar al sistema de frenos: aprovecha la incomprensibilidad del líquido para transmitir fuerza sin pérdida de energía.

El sistema de refrigeración es vital para mantener la temperatura adecuada del motor, evitando sobrecalentamientos y daños graves. Sus principales elementos trabajan en conjunto para regular el calor generado durante la combustión. ⚙️ Componentes principales Depósito de expansión 🧴 Almacena el refrigerante y permite verificar niveles de forma segura. Radiador 🌡️ Enfría el refrigerante mediante el flujo de aire. Suele presentar fugas en las uniones laterales. Termostato 🔧 Regula el paso del refrigerante según la temperatura, permitiendo que el motor alcance rápidamente su temperatura óptima. Ventiladores eléctricos 💨 Se activan cuando la temperatura sube o al encender el aire acondicionado, ayudando a enfriar el radiador. Mangueras y conexiones 🔗 Transportan el refrigerante entre los diferentes componentes. ❌ Fallos comunes Fugas en el radiador o mangueras → pérdida de refrigerante. Termostato trabado → sobrecalentamiento o motor frío constante. Ventiladores dañados → el motor se calienta en tráfico o clima cálido. Depósito de expansión roto → fugas y baja presión del sistema. ✔️ Recomendaciones Revisar el nivel de refrigerante semanalmente. Cambiar el líquido refrigerante cada 40.000 – 50.000 km. Sustituir el termostato y las mangueras en mantenimientos mayores. Usar siempre refrigerante recomendado, nunca agua, ya que oxida el sistema. 📌 Importancia Un sistema de refrigeración en mal estado puede causar desde pérdida de potencia hasta un daño total del motor por sobrecalentamiento. 🤓 Dato curioso El refrigerante no solo controla la temperatura, también lubrica la bomba de agua y evita la corrosión interna en el bloque y radiador.

Experiencia con calidad de equipo original Los sensores NOx de Schaeffler Vitesco son el complemento ideal para la gama de productos de Schaeffler Vehicle Lifetime Solutions. Gracias a su contrastada calidad de equipo original, estos sensores establecen estándares en la medición precisa del óxido de nitrógeno, lo que respalda un tratamiento posterior eficiente de los gases de escape y el cumplimiento de las estrictas normativas medioambientales a nivel mundial. Con nuestros sensores NOx, puedes confiar en la calidad de equipo original líder del mercado para controlar las emisiones con precisión, garantizar un funcionamiento fiable y disfrutar de una larga vida útil. Ventajas Clave - Una larga vida útil del vehículo Con un diseño robusto, los sensores NOx Schaeffler Vitesco de alta calidad garantizan la fiabilidad y aseguran la vida útil del motor y del sistema de escape. - Funcionamiento fiable La instalación rápida y sencilla simplifica el mantenimiento y garantiza una medición en tiempo real de gran precisión una rápida disponibilidad operativa. - Control preciso de las emisiones Un control preciso de las emisiones evita la emisión excesiva de contaminantes y garantiza el cumplimiento de las normativas de emisiones a nivel mundial (UE, NA, JP, CN). Somos distribuidores para León. Consulta con nuestros expertos.

🔧 Mantener tu coche en buen estado no solo alarga su vida útil, también evita fallos costosas y mejora la seguridad. Aquí tienes los principales elementos y cada cuánto revisarlos o cambiarlos: 🔦 Lámparas del coche ✔️ Revisión cada 6 meses. ❌ No esperes a que se funda para cambiarla. 🌧️ Limpiaparabrisas ✔️ Cada 6 meses o 1 año. 👉 Vital para una visibilidad segura bajo la lluvia. 🔥 Bujías ✔️ Cambio cada 30.000 a 50.000 km. 👉 Afectan directamente el arranque y consumo de combustible. ⛓️ Correa de distribución ✔️ Sustitución entre 96.000 a 160.000 km 👉 Si se rompe, puede dañar gravemente el motor. ⚙️ Correa de distribución (revisión extra) ✔️ Revisión cada 100.000 km. ⛽ Bomba de combustible ✔️ Revisión cada 100.000 km. 💧 Bomba de agua ✔️ Revisión cada 100.000 km. 👉 Fundamental para el sistema de refrigeración. 🏎️ Embrague ✔️ Sustitución cada 100.000 km. 👉 Evita patinamientos y pérdida de potencia. 🛢️ Filtro de combustible ✔️ Cambio entre 40.000 y 80.000 km. 👉 Mantiene limpio el sistema de inyección. 🛑 Pastillas de freno ✔️ Cambio cada 30.000 a 70.000 km. 👉 Si chirrían o vibran, revisarlas antes. 🥏 Discos de freno ✔️ Cambio entre 80.000 y 120.000 km. 👉 Revisar desgaste para evitar daños mayores. 🔧 Inyectores de combustible ✔️ Revisión entre 40.000 a 60.000 km. 👉 Si están sucios, aumentan el consumo y reducen la potencia. ✅ Consejo: Seguir estos intervalos te ahorrará dinero a largo plazo y mantendrá tu coche siempre listo. ⚠️ Precaución: Los intervalos pueden variar según la marca y el uso del vehículo.

Según datos de 2024, en las carreteras españolas existen cerca de 3.400 radares, de los que 2.341 son fijos, 566 de semáforo y 232 de tramo, además de 256 de control de cinturón de seguridad y uso de teléfonos móviles. En cuanto al tipo de vía, prácticamente la mitad de ellos se encuentran colocados en ciudades, el 34% en carreteras secundarias y el 18% en vías rápidas. En este artículo vamos a centrarnos en los radares fijos que, de acuerdo a las cifras, son los que más abundan en nuestras carreteras y los que más sanciones imponen con mucha diferencia. Además, hay que señalar que su número aumenta cada año y, prueba de ello, es que el pasado mes de marzo la DGT anunció la puesta en funcionamiento de 9 radares fijos nuevos durante los primeros meses de 2025. Con respecto a su control y mantenimiento, hay que citar que la DGT es la que se encarga de la gestión de la mayoría de ellos, aunque existen otros organismos, como policías locales, que también instalan y gestionan radares en sus respectivas áreas de competencia.

Árbol de levas Controla la apertura y cierre de las válvulas de admisión y escape. Su movimiento está sincronizado con el cigüeñal mediante correa o cadena. Bujía Genera la chispa eléctrica que enciende la mezcla aire-combustible en motores a gasolina. Inyector de combustible Pulveriza el combustible dentro del cilindro o en la admisión, garantizando una mezcla homogénea. Cilindro Cámara donde se mueve el pistón y ocurre la combustión. Pistón Se desplaza hacia arriba y abajo, transmitiendo la fuerza de la explosión al cigüeñal mediante la biela. Cigüeñal Convierte el movimiento lineal de los pistones en movimiento rotativo que impulsa el vehículo. Válvula de admisión Permite la entrada de la mezcla aire-combustible al cilindro. Válvula de escape Libera los gases quemados hacia el sistema de escape. Alternador Genera energía eléctrica para cargar la batería y alimentar los sistemas eléctricos del vehículo. Ventilador Ayuda a refrigerar el motor, manteniendo la temperatura de trabajo adecuada. Filtro de aceite Retiene impurezas, evitando desgaste en las partes móviles del motor. Cómo funciona (Ciclo de 4 tiempos) Admisión: el pistón baja, entra mezcla de aire y combustible por la válvula de admisión. Compresión: el pistón sube, comprimiendo la mezcla. Explosión (combustión): la bujía enciende la mezcla, generando una explosión que empuja el pistón hacia abajo. Escape: el pistón sube de nuevo y expulsa los gases quemados por la válvula de escape. Este ciclo se repite miles de veces por minuto en cada cilindro, generando la energía que mueve el automóvil. Consejo práctico Cambiar periódicamente aceite y filtro prolonga la vida del motor. Un buen mantenimiento del sistema de refrigeración evita sobrecalentamientos y daños graves. Este sistema es la base de los motores modernos y demuestra cómo la ingeniería transforma combustible en movimiento útil.

El Guardián de la Temperatura del Motor 🔧💧 El radiador es la pieza principal del sistema de refrigeración. Su función es disipar el calor del refrigerante que circula por el motor, evitando el sobrecalentamiento y asegurando un funcionamiento eficiente. 🔩 Partes principales del radiador 🔝 Tapón de radiador / tapón de presión ➝ Mantiene la presión adecuada del sistema. 🧪 Depósito de expansión ➝ Acumula el exceso de refrigerante cuando se expande por el calor. 🔄 Manguera superior ➝ Conduce el refrigerante caliente desde el motor al radiador. 🔄 Manguera inferior ➝ Retorna el refrigerante ya enfriado hacia el motor. 💨 Aletas y núcleo ➝ Favorecen la disipación del calor con ayuda del flujo de aire. 🟤 Tubos de cobre/aluminio ➝ Canales por donde circula el refrigerante. ⚙️ Cómo funciona El motor genera calor durante la combustión. 🔥 El refrigerante caliente circula hacia el radiador por la manguera superior. Al pasar por el núcleo y las aletas, el aire que entra (ventilador + movimiento del auto) enfría el líquido. 💨 El refrigerante ya frío regresa al motor por la manguera inferior. El ciclo se repite manteniendo la temperatura ideal (90°C aprox.). 🚨 Síntomas de un radiador en mal estado 🌡️ Aumento de temperatura del motor. 💨 Vapor saliendo del capó (fugas de refrigerante). 🟢 Manchas verdes/rosadas (pérdida de anticongelante). ⚠️ Fallos en el aire acondicionado (por sobrecalentamiento). 🛠️ Consejos de mantenimiento ✔️ Revisa el nivel de refrigerante con frecuencia. ✔️ Cambia el refrigerante cada 40,000 – 60,000 km. ✔️ Limpia el radiador y verifica que no esté obstruido. ❌ No uses solo agua: acelera la corrosión interna. 🔍 Dato curioso Los primeros automóviles usaban radiadores de cobre y latón 🟠, pero hoy en día la mayoría son de aluminio con plásticos para ser más livianos y eficientes.

Horquilla (brazo superior) Une el chasis con el muñón de dirección. Mantiene la alineación de la rueda en su recorrido vertical. Resorte helicoidal (muelle) Absorbe las irregularidades del camino. Soporta el peso del vehículo y mantiene la altura. Amortiguador Controla el rebote del resorte helicoidal. Evita movimientos bruscos y mejora la estabilidad. Rótula Permite la movilidad de la suspensión y la dirección en diferentes ángulos. Une los brazos de control con el muñón de dirección. Barra estabilizadora Reduce la inclinación de la carrocería en curvas. Conecta las suspensiones de ambos lados del vehículo. Barra del puntal (bieleta de la barra estabilizadora) Une la barra estabilizadora con el puntal o brazo de control. Transmite fuerzas de balanceo. Muñón de dirección Pieza donde se montan la rueda, los frenos y la rótula. Permite que la rueda gire con el volante. Brazo de control inferior Sujeta la parte inferior de la suspensión. Permite el movimiento vertical y mantiene la geometría de las ruedas. Horquilla del puntal Conecta el amortiguador con el brazo de control inferior. Asegura el anclaje y funcionamiento del puntal. ✅ En conjunto: Este sistema permite que el vehículo absorba impactos del terreno, mantenga adherencia de los neumáticos, reduzca vibraciones y proporcione confort y seguridad en la conducción.