¿POR QUÉ ES IMPORTANTE ELEGIR EL MEJOR ACEITE DE MOTOR?

El aceite de motor tiene la función de proteger completamente el motor, lubricando sus piezas y creando una película sobre las piezas móviles. Entre las tareas de mantenimiento de un vehículo, el cambio de aceite es una de las más básicas que debe realizarse sí o sí de manera oportuna.

De no realizarlo a tiempo, exponemos el preciado motor de nuestro coche a un mayor desgaste, a la obstrucción del filtro de combustible, al sobrecalentamiento, a los ruidos y otros posibles problemas y averías del motor.

Las consecuencias pueden ser desastrosas, por lo que conviene respetar siempre los intervalos de cambio de aceite y utilizar el mejor aceite de motor posible y el más adecuado para nuestro coche.


El tipo de aceite elegido es importante, su elección no puede dejarse al azar. Los aceites low-cost o de baja calidad pierden rápidamente sus propiedades y dejan el motor desprotegido. Esto puede derivar en los problemas mencionados anteriormente.

Por el contrario, un aceite de motor de calidad mantiene protegido el motor de manera efectiva garantizando una baja fricción entre sus componentes y evitando su sobrecalentamiento. El uso de aceites de motor baratos resultan peligrosos para el motor.

Por eso, adquirir un aceite de motor de buena calidad es la mejor opción, pues está en juego el buen estado del motor. Siempre deben respetarse los intervalos de sustitución indicados por el fabricante del coche y del aceite de motor en cuestión. Así nos aseguramos de que el motor goza de una larga vida útil y de un funcionamiento impecable en todo momento.


¿CÓMO DEBE SER EL ACEITE DE MOTOR?

Debe:

  • Limpiar bien los componentes del motor de las contaminaciones insolubles.
  • Tener una alta termoestabilidad y resistencia a la termooxidación.
  • Ser compatible con el material de los elementos de sellado, no destruir los detalles de metal.
  • Crear una película de aceite sólida, previniendo la abrasión de las superficies que están en contacto. A menudo con alcanzar este objetivo se usan los aditivos especiales, por ejemplo, el bisulfuro de molibdeno.
  • Mantener sus propiedades durante mucho tiempo.
  • Tener características óptimas de viscosidad a cualquier temperatura para proporcionar una eficaz lubricación de las superficies que están en contacto durante la puesta en marcha en frío y prevenir su desgaste en las temporadas calurosas.
  • Ser resistente a espumación.
  • Tener baja volatilidad para no contaminar el medio ambiente. 


DISTINTOS TIPOS DE ACEITE DE MOTOR

  •  Existen aceites de motor minerales y aceites de motor sintéticos, dependiendo de la manera en que se obtienen: 
  • El aceite mineral es un producto del refinamiento del petróleo. Es un aceite de motor barato, comparado con los otros tipos. Su degradación por oxidación es más rápida que la de los otros tipos de aceite, por lo que debe cambiarse con mayor frecuencia. Normalmente, se le añaden aditivos para procurar su cambio de viscosidad y que trabaje de manera óptima a las distintas temperaturas.


El aceite de motor sintético se obtiene utilizando componentes de hidrocarburos modificados químicamente o sintetizados a partir de otras materias primas. Es más caro pero no se degrada como el aceite de motor mineral, conserva mejor su estado durante su vida útil, evita la formación de depósitos y protege mejor el motor. Al no llevar aditivos para facilitar el cambio de viscosidad, tiene un mejor rendimiento a temperaturas extremas. Esta es la mejor opción para dar respuesta a qué aceite de motor elegir para un coche con mucho kilometraje.


  • El aceite de motor semisintético o aceite de motor híbrido es una mezcla de los dos tipos anteriores. Este aceite es algo menos costoso que el aceite sintético y tiene algunas de las propiedades de los dos tipos de aceite anteriores. Por ejemplo, se comporta bien a altas temperaturas.


Esta clasificación es la más popular, pero bastante superficial y relativa. Por eso los especialistas del Instituto Americano del Petróleo (API), para evitar el término “semisintético” a caso hecho, han dividido todos los aceites básicos en cinco grupos:


  1. Al primer grupo le pertenecen los productos obtenidos del petróleo mediante la purificación con disolventes selectiva y deparafinización.
  2. El segundo grupo está formado por los productos altamente refinados con bajo contenido de parafinas y compuestos aromáticos, que han pasado un hidrotratamiento especial.
  3. El tercer grupo está compuesto por los lubricantes de elevada viscosidad, fabricados mediante el hidrocraqueo catalítico.
  4. El cuarto grupo está formado por las composiciones sintéticas a base de las polialfaolefinas.
  5. Al quinto grupo le pertenecen todos los aceites que no han encajado en las categorías anteriores. Son fabricados sobre la base de los éteres complejos, los glicoles y otras sustancias.

La composición de los productos modernos suele incluir los componentes de varios grupos.


QUÉ INDICA LA ETIQUETA SAE

La viscosidad del aceite es una de sus características esenciales de las que depende si se puede usar en una u otra estación del año.

De acuerdo con la clasificación SAE (Society of Automobile Engineers) se puede dividir todos los aceites de coches en las siguientes categorías:


  1. De invierno. Son óptimos para el uso en las temporadas frías, pero no son útiles para el uso en las estaciones del año calurosas. Son marcados del modo siguiente: la letra W (de “winter”) indica que se puede aplicar este producto en invierno. La cifra que está delante siempre es múltiple de cinco y señala la temperatura mínima para que siga protegiendo de forma eficiente el motor del desgaste durante la puesta en marcha en frío. Por el punto de partida se toma el valor de -35 °С, que corresponde a la clase 0. Las clases siguientes significan la subida de temperatura en 5 °С: un producto marcado con 5W mantiene sus propiedades de uso a la temperatura -30 °С; y el 10W a -25 °С, respectivamente, etc.
  2. De verano. Proporcionan una oportuna lubricación de los detalles y su protección en la temporada calurosa del año pero son poco eficientes a temperaturas bajas. En su etiquetado también se usan las cifras: 20, 30, 40, 50 y 60. Indican la viscosidad cinemática a 100 °С y no la temperatura máxima del medio ambiente, como muchos creen erróneamente.
  3. Todas las estaciones. Son óptimos para el uso en la temporada calurosa así como fría. En su etiqueta se indica la posibilidad de uso en invierno, la temperatura admisible y el nivel de viscosidad al calentamiento máximo: 5W-30, 10W-60, etc. Hoy en día es el más común.


INTERPRETACIÓN DE LA CLASIFICACIÓN API

Los especialistas de API han elaborado una clasificación que aspira dividir los aceites en función de sus descripciones técnicas y las propiedades de uso.

 De forma indirecta, permite valorar la calidad del lubricante, puesto que los estándares de calidad son mucho más estrictos respecto a las últimas elaboraciones comparando con la producción de los años anteriores.


Todos los aceites de motor, conforme a los estándares API, pueden ser divididos en dos categorías, cada uno de los cuales se subdivide a su vez en distintas clases:


S. Son destinados para los motores a gasolina. Hoy en día en la mayoría de los países se permite usar los aceites de 4 clases:

  1. SJ. Se recomienda su uso en los motores fabricados hasta 2001.
  2. SL. Son óptimos para los trenes motrices fabricados hasta 2004. Muchos consorcios automovilísticos lo toman como un estándar mínimo necesario para el mantenimiento técnico del coche.
  3. SM. Son destinados para los motores fabricados hasta 2010. Se distinguen por su elevada productividad a temperaturas bajas, la resistencia a la oxidación y a formación del depósito. Mantienen excelentes propiedades de uso durante toda la duración de servicio.
  4. SN. Fueron estrenados en 2010. Hoy en día son capaces de proporcionar el grado de protección más alto del motor, tanto como su alta eficiencia. Contribuyen al ahorro del combustible. Previenen el desgaste prematuro del turbocompresor. No ejercen una influencia destructiva en los sellos y los retenedores de aceite.


C. Se usan en los trenes motrices tipo Diesel del transporte comercial. Hoy en día en los motores de varios años de producción se usan los productos marcados CH, CI, CJ, CK. La cifra 4 después de la indicación de la clase indica que se puede usar el lubricante en el motor de cuatro tiempos. Vamos a examinarlo en detalle:

  1. CH-4. Han sido presentados en 1998. Son óptimos para los motores que funcionan en base al combustible de alta calidad con contenido de azufre menos del 0,5%.
  2. CI-4. Aparecieron en 2002. Proporcionan una protección segura del motor y los elementos del sistema de recirculación de los gases de escape (EGR) de los depósitos del hollín y el desgaste prematuro. Algunos lubricantes de esta clase pueden ser marcados CI-4 PLUS.
  3. CJ-4. Se destacan por su mejorada termoestabilidad, la resistencia a la oxidación, tienen una prolongada vida útil.
  4. CK. Están elaborados para la protección de los motores que se fabricaron en 2017, pero pueden usarse como una alternativa mejorada incluso en unos modelos anteriores.

Existen lubricantes universales que son óptimos para el uso en los motores diesel así como a gasolina. Tienen un etiquetado doble, por ejemplo, CН-4/SJ.


COMPONENTE ENERGÉTICAMENTE EFICIENTE EN LA CLASIFICACIÓN ACEA

La reducción de la toxicidad de escape y la reducción del consumo de combustible son los requisitos principales a los que debe corresponder un producto moderno. Por eso cada vez más en el embalaje del lubricante se puede ver la marca que indica que este producto respeta los últimos estándares ecológicos.

Conforme a la clasificación, propuesta por la Asociación Europea de Autoproductores (ACEA), se puede dividir todos los aceites aprobados en las categorías siguientes:


  1. A. Para los motores de gasolina. Después de una letra sigue una cifra que indica el nivel de sostenibilidad ecológica y la viscosidad en ciertas condiciones. En esta categoría entran tres clases: А1, А3 y А5. Las cifras 1 y 5 indican que estos productos son energéticamente eficientes. El resto parece a la clasificación API: más alta es la cifra, mejor son las características de uso del producto.
  2. B. En esta categoría están los lubricantes para coches de turismo y vehículos comerciales de pequeño tamaño que funcionan en base al combustible Diesel. También se dividen en clases: В1 y В5 son energéticamente eficientes, В3, В4 son convencionales.
  3. E. Los productos marcados por esta letra están elaborados para los motores diesel de los camiones potentes y vehículos de uso especial. Los que tengan una marca E1 se consideran económicamente eficaces, los demás son convencionales.


Por cierto, el ahorro de combustible fue un parámetro que tomaron en cuenta los expertos API, al haber introducido en el etiquetado una nueva designación — EC (Energy Conserving).

Estos aceites se destacan por su reducida viscosidad al subir extremadamente la temperatura, gracias a lo que se proporciona un curso fácil y libre de los detalles móviles y se reduce el consumo del combustible. Pero al mismo tiempo se reduce el espesor de la película de aceite, lo que es peligroso especialmente para los motores antiguos con gran recorrido, cuyos componentes exigen una protección adicional.


¿QUÉ ES LO QUE COMPARTEN EN COMÚN DISTINTAS CLASIFICACIONES DE ACEITES?

A pesar de distintos principios de división de los aceites, las clasificaciones están estrechamente vinculadas entre sí. Por ejemplo, si conforme al etiquetado API el lubricante se posiciona como SH, entonces, no puede pertenecer a las clases А1 o А5 según ACEA, porque las exigencias correspondientes de cara a las propiedades de bajo consumo de energía de los productos empezaron a plantearse más tarde, a partir del estreno de la clase SJ. Si en la etiqueta hay una designación А5, entonces, este producto se encuentra en el sistema API no por debajo de SL, que tiene los intervalos de sustitución aumentados.

Los lubricantes energéticamente eficientes marcados con А1, А5, В1 y В5, suelen tener viscosidad de alta temperatura 30 y más bajo. Los lubricantes cuyo índice es igual a 40, pertenecen a las clases А2, А3, В2, В3, В4 y se consideran energéticamente eficientes.


Conoce nuestro Lubricante Petronas Syntium, con su tecnología °CoolTech™ que trabaja en profundidad en el corazón del motor. Su resistente cadena de aceite rinde bajo una presión extrema, lo que le permite resistir y disipar enérgicamente las altas temperaturas y mantener una película protectora fuerte y estable, incluso a viscosidades más bajas. https://www.aljocar.com/petronas-lubricantes



Por Aljocar 29 de abril de 2025
Todo lo que debes saber sobre el filtro de partículas Este dispositivo lo monta casi al totalidad de propulsores diésel modernos y se encarga de eliminar las partículas sólidas generadas por estos motores. ¿Qué es el filtro de partículas? También conocido como FAP o DPF– es un dispositivo ubicado en el tubo de escape que se encarga de retener todas las partículas sólidas generadas por los motores diesel. Una vez que el filtro está ´lleno´ de esas partículas, él mismo se encarga de incinerarlas, reduciendo así el nivel de emisiones contaminantes. Este proceso se conoce como regeneración. ¿Lo llevan todos los diésel? No, aunque cada vez es más habitual en los modelos nuevos para cumplir con la normativa anticontaminación Euro V y la actual Euro VI -hoy lo emplea la gran mayoría de los modelos-. Por eso, si tu coche es de antes de 2006, lo más probable es que no lo lleve -y, en ese caso, tampoco es obligatorio que lo instales-; eso sí, para asegurarte de ello, mira en tu libro de mantenimiento… o pregunta en el taller cuando realices la próxima revisión. ¿Qué pasa si se avería? Se encenderá la luz de avería del motor en el cuadro de instrumentos y es posible que el motor falle. Además, no pasarás la ITV. Repararlo cuesta desde 1.200 euros. Así funciona: ¿Cómo elimina las partículas? Depende del uso que le demos al vehículo. De media, el filtro necesita que se circule durante una media hora aprox. por encima de unas 2.500 rpm para que los gases de escape alcancen una temperatura lo suficientemente elevada -unos 600 grados– como para que se incineren las partículas sólidas. Si se circula muy poco por encima de este régimen, cuando el filtro está ´lleno´ de esas partículas, el propio motor tendrá que realizar un ciclo de regeneración; para ello, inyectará más carburante del habitual, algo que aumenta la temperatura de los gases de escape. Estos ciclos se pueden producir cada 1.000 ó 1.200 km -depende del tipo de uso- y, durante este proceso, el consumo de combustible aumenta -un 10-15%- y el sonido del motor se vuelve más grave; suele durar unos 20 minutos, durante los cuales se puede circular -el motor no debería perder rendimiento-… pero no se debe parar el motor. ¿Cómo alargar la vida del filtro de partículas? Respeta su mantenimiento. Sigue el plan de mantenimiento que indique tu fabricante, prestando especial atención al tipo de aceite motor. Los modelos con filtro de partículas suelen emplear un aceite Low Saps, preparado para soportar la ´contaminación´ que produce en el aceite el hecho de inyectar más carburante del necesario cuando hay que aumentar la temperatura del escape para realizar una regeneración. Evita los trayectos cortos. En ellos, el motor no suele alcanzar su temperatura ideal de funcionamiento… y el filtro tampoco, por lo que se satura con más facilidad y el motor necesitará iniciar un ciclo de regeneración cada poco tiempo -incluso, cada menos de 1.000 km-. Sal de vez en cuando a carretera. Circular sólo por ciudad provoca que el filtro acumule muchas partículas sólidas. Además, como el escape trabaja a poca temperatura, el motor se ve obligado a realizar regeneraciones activas cada poco tiempo. Por eso, es recomendable que, cada 800 ó 900 km, circules por autopista a unos 3.000 rpm durante unos 15 minutos. También te puede interesar este artículo: https://www.aljocar.com/el-fin-de-la-cristalizacion-de-adblue
Por Aljocar 29 de abril de 2025
EL CICLO DE 4 TIEMPOS DE UN MOTOR A COMBUSTIÓN INTERNA El motor realiza cuatro etapas principales dentro de cada cilindro para generar potencia: ⸻ 1. Admisión • Qué pasa: El pistón baja, creando un vacío que abre la válvula de admisión. Entonces entra aire (y gasolina si es motor de inyección indirecta) en el cilindro. • Objetivo: Llenar el cilindro de mezcla aire-combustible (o solo aire en un diésel). • Movimiento: El pistón va de arriba hacia abajo. ⸻ 2. Compresión • Qué pasa: Se cierran las válvulas, y el pistón sube, comprimendo la mezcla dentro del cilindro. • Objetivo: Comprimir el aire-combustible para que al momento de la explosión sea más potente. • Movimiento: El pistón va de abajo hacia arriba. ⸻ 3. Explosión o combustión • Qué pasa: En el punto más alto del pistón (punto muerto superior), una chispa (bujía en motores gasolina) enciende la mezcla. En un motor diésel, el calor de la compresión misma enciende el combustible. • Objetivo: Provocar una explosión controlada que empuje el pistón hacia abajo con fuerza. • Movimiento: El pistón es empujado violentamente de arriba hacia abajo. • Dato: Este es el único tiempo que genera energía para mover el vehículo. ⸻ 4. Escape • Qué pasa: Se abre la válvula de escape, y el pistón sube nuevamente, expulsando los gases quemados hacia el sistema de escape (y fuera del auto). • Objetivo: Limpiar el cilindro para el siguiente ciclo. • Movimiento: El pistón va de abajo hacia arriba.
Por Aljocar 25 de abril de 2025
INA Kit de distribución Una solución inteligente para la distribución Mayores cargas requieren un mantenimiento regular Para asegurar la perfecta sincronización del cigüeñal y el árbol de levas, los fabricantes de vehículos utilizan una cadena de distribución o una correa dentada en la distribución del motor. Las ventajas de la tecnología de los sistemas accionados por correa son la suavidad de funcionamiento y el bajo peso. ​​​​​​​ Debido a las mayores exigencias en cuanto a la comodidad de conducción así como a las especificaciones para reducir el consumo de combustible y las emisiones de CO2, las cargas de todos los componentes del motor - incluyendo la distribución accionada por correa - están aumentando. Para prevenir eficazmente los daños en el motor y sus costes derivados, se recomienda que todos los componentes de la distribución por correa se sustituyan regularmente de acuerdo con las especificaciones e intervalos del fabricante. INA Kit de distribución: una solución completa y de calidad. Schaeffler ha creado soluciones de mantenimiento para el sistema de distribución bajo su marca de productos INA para una sustitución simple y eficiente. Cada solución integral contiene todos los componentes necesarios para un mantenimiento adecuado, adaptados individualmente a cada vehículo: La correa dentada Polea tensora Rodillo guía Accesorios necesarios, tales como tornillos, tuercas, pernos y sellos Como en todas las soluciones de mantenimiento de Schaeffler, los componentes individuales están perfectamente adaptados para asegurar una óptima funcionalidad del vehículo después de la reparación. En general, se desaconsejan aquellas reparaciones en las que sólo se cambia la correa, una polea o un tensor. El motivo es que todos los componentes forman un sistema coordinado que debe ser renovado por completo. Por lo tanto, para asegurar una sustitución duradera y libre de fallos, el profesional debe reemplazar todos los componentes relevantes de la transmisión por correa. Incluido: la bomba de agua La bomba de agua es un componente que también se ve afectado por el desgaste, por eso la amplia gama de productos INA también incluye un gran número kits de distribución con bomba de agua. ​​​​​​​ Para los motores en los que el termostato está montado directamente en la carcasa de la bomba de agua y su posterior sustitución requeriría que la correa de distribución se retirara de nuevo, INA también ofrece KITs especiales que incluyen el termostato. De este modo se garantiza una sustitución sostenible de la correa de distribución, incluidos todos los componentes sometidos a desgaste. Somos distribuidores, consulta con nuestros expertos, la referencia precisa para tu vehículo.
Por Aljocar 25 de abril de 2025
Piezas relacionadas con el sistema de correa de distribución y correa de motor: La correa de distribución es un componente crucial del motor que sincroniza el cigüeñal y el árbol de levas para asegurar el correcto funcionamiento del motor. Sin embargo, otras correas, como la correa de transmisión, se conectan a varios accesorios. A continuación se presentan los componentes clave relacionados con el sistema de distribución y correa de transmisión: ✍️1. Polea de bomba de dirección asistida: 📍 Se une una polea a la bomba de dirección asistida. 📍 Conducido por la correa de transmisión, ayuda a circular el líquido de dirección asistida para más fácil dirección. ✍️2. Bomba de dirección asistida: 📍 Bombas líquido hidráulico para ayudar en la dirección. 📍Se basa en la polea y la correa para funcionar de manera eficiente. ✍️3. Polea del cigüeñal: 📍 Conectada al cigüeñal del motor, esta gran polea acciona la correa de distribución y la correa de transmisión. 📍Potencia varios accesorios como el alternador, bomba de dirección asistida y compresor de aire acondicionado. ✍️4. Polea del alternador: 📍Se une una pequeña polea al alternador. 📍 Conducido por la correa de transmisión, ayuda a generar energía eléctrica para cargar la batería y ejecutar componentes eléctricos. ✍️5. Correa de accesorios: 📍 Una correa larga que recorre múltiples poleas, alimentando el alternador, la bomba de dirección asistida y el compresor de aire acondicionado.
Por Aljocar 16 de abril de 2025
Qué hay que saber sobre los sensores de velocidad y posición del motor Qué función cumplen los sensores de posición del motor Los sensores de velocidad y posición del motor son componentes electrónicos encargados de proporcionar a la unidad de control del motor (ECU) información esencial para el funcionamiento del sistema de encendido y la inyección de combustible. Los más comunes en los vehículos actuales son el sensor de posición del árbol de levas y el sensor de cigüeñal, también conocidos como sensores de fase y de régimen, respectivamente. Sensor de árbol de levas: posición y funcionamiento El sensor de posición del árbol de levas mide con precisión la posición del árbol de levas, un dato que, en combinación con el sensor de cigüeñal, permite determinar en qué fase del ciclo de combustión se encuentra cada cilindro. Esta información es utilizada por la ECU para controlar el momento de inyección y la sincronización del encendido. Estos sensores están ubicados generalmente cerca del árbol de levas, en la culata o su proximidad. Pueden emplear tecnología inductiva o de efecto Hall, siendo esta última la más común en motores modernos. En el caso de los sensores Hall, su diagnóstico debe realizarse con osciloscopio, mientras que en los inductivos es posible comprobar su resistencia interna, que suele situarse entre 500 y 1500 ohmios. Diagnóstico y sustitución Tras la sustitución de un sensor de árbol de levas, algunos vehículos pueden requerir un proceso de aprendizaje mediante equipo de diagnosis, ya que la señal del nuevo sensor puede no coincidir exactamente en fase con la del componente sustituido. Este desfase puede afectar al funcionamiento si no se recalibra la ECU. Los fallos más comunes de este tipo de sensores se deben a la presencia de agua en el conector, roturas de cableado o envejecimiento del componente. Sus síntomas incluyen ralentí irregular, pérdida de potencia, calado del motor o encendido del testigo de avería, con códigos como P0340, P0011 o P0021. Sensor de cigüeñal: señal principal para la ECU El sensor de posición del cigüeñal proporciona la información más crítica a la ECU, ya que mide la velocidad de rotación y la posición angular del cigüeñal, datos esenciales para que el motor arranque y funcione correctamente. Este sensor se instala en el bloque inferior del motor, cercano al cigüeñal, y detecta el giro mediante una rueda dentada o disco asociado al eje. Existen sensores de cigüeñal inductivos y de efecto Hall. Los primeros generan una señal de onda variable al girar el cigüeñal, mientras que los segundos, más modernos, producen una señal cuadrada y permiten la detección incluso a baja velocidad o con el eje parado. Además, ofrecen mayor resistencia a las interferencias y condiciones ambientales adversas. Síntomas y causas de fallo Un fallo completo del sensor de cigüeñal puede impedir el arranque del motor. Otros síntomas asociados son tirones, fallos de encendido, calado repentino y pérdida de potencia. Las causas más frecuentes son similares a las del sensor de árbol de levas: agua o humedad, rotura de cables y desgaste por el uso. Importancia del diagnóstico adecuado Tanto el sensor de árbol de levas como el de cigüeñal son esenciales para el correcto funcionamiento del sistema de gestión del motor. Un diagnóstico preciso con herramientas adecuadas, como el osciloscopio, y una instalación correcta tras su sustitución, son fundamentales para garantizar una reparación eficaz y evitar fallos persistentes en la electrónica del motor. Fuente: La Comunidad del Taller
Por Aljocar 16 de abril de 2025
Montaje del filtro de aceite: errores comunes y recomendaciones clave El montaje del filtro de aceite es una operación frecuente en el mantenimiento del vehículo, pero no está exenta de errores que pueden generar consecuencias mecánicas relevantes. Existen tres aspectos clave que deben tenerse en cuenta para evitar fallos: el apriete, el roscado y la lubricación de la junta. Evitar el sobreapriete del filtro de aceite Uno de los errores más habituales en la instalación del filtro de aceite es apretarlo en exceso. Comline subraya que el filtro debe enroscarse a mano, sin herramientas de extracción, ya que estas pueden provocar un apriete excesivo que complique la futura retirada del componente. Además, un sobreapriete puede dañar la pintura protectora del cartucho, lo que deja expuesto el cuerpo del filtro a la corrosión y aumenta el riesgo de fallo prematuro. La recomendación general es girar el filtro hasta que la junta entre en contacto con la base del vehículo y, a continuación, aplicar un cuarto de vuelta adicional. Precaución con el roscado El transroscado es otro de los problemas que pueden surgir durante la instalación. Esta situación, en la que el filtro no queda alineado correctamente, puede causar un contacto defectuoso de la junta de goma, con la consiguiente pérdida de estanqueidad. Comline advierte de que esto incrementa significativamente la posibilidad de fugas y puede provocar que el filtro se afloje con el uso o resulte difícil de desmontar en la siguiente revisión. Importancia de lubricar la junta El tercer aspecto fundamental en el montaje del filtro de aceite es lubricar la junta antes de la instalación. Aplicar una pequeña cantidad de aceite ayuda a mejorar el sellado inicial y facilita el desmontaje en futuras intervenciones. Una pizca de aceite es suficiente para cumplir esta función sin riesgos de exceso. Instalación segura, mantenimiento sin contratiempos La correcta instalación del filtro de aceite no solo evita averías relacionadas con fugas o fijaciones defectuosas, sino que también contribuye a mejorar la eficiencia del mantenimiento y a reducir los tiempos de intervención en el taller. Atender a estas recomendaciones básicas permite al profesional asegurar una intervención fiable y sin complicaciones. Fuente: La Comunidad del Taller
Por Aljocar 12 de abril de 2025
El cigüeñal es el eje horizontal de un motor térmico y es protagonista en el desplazamiento de un coche. Se trata de un brazo rígido, generalmente de fundición metálica o, en algunos casos, de metal forjado, acodado y que se mueve gracias a las sucesivas explosiones que tienen lugar en los cilindros. Actúa mediante un principio mecánico denominado biela-manivela, similar al mecanismo de los pedales de una bicicleta. Su propósito es transformar el movimiento rectilíneo de los pistones, que suben y bajan alernativamente (casi como los pies del ciclista), en un movimiento circular y uniforme que, a través del sistema de transmisión, sirva para mover las ruedas del automóvil. Cada segmento del cigüeñal se llama muñequilla. Tiene forma de U y está abrazada por el extremo de una biela que conecta con el pistón en su parte superior mediante un bulón, el cual también sirve de eje móvil. Gracias a esta conexión de elementos mecánicos, cuando se provoca una explosión de la mezcla (oxígeno y combustible) dentro de un cilindro, el pistón baja y gira el cigüeñal 180 grados. Como no es el único cilindro del propulsor (hablamos de motores de coches modernos), hay otro u otros pistones que realizan el mismo proceso a continuación. Así, el cigüeñal vuelve a girar otros 180 grados devolviendo a la posición inicial al primer pistón de forma pasiva y pudiendo eliminar los gases derivados de la explosión en la fase de escape de ese cilindro a través de las válvulas correspondientes. Un cigüeñal debe estar construido en una aleación capaz de soportar la velocidad de su giro, que es la que marca las revoluciones por minuto del motor, además de contar con casquillos antifricción en las muñequillas para que las uniones con la biela sean duraderas. Generalmente se apoya en varios puntos y va unido a dos extremos: primero, al volante de inercia, que regula el giro, evita vibraciones y se acopla al embrague, encargado de transmitir el movimiento del motor a la caja de cambios; segundo, a una polea (comúnmente denominada dámper), que no sólo reduce las vibraciones, sino que mueve la cadena o correa de distribución. Somos distribuidores Originales de todas las partes del motor. Consulta con nuestros expertos.
Por Aljocar 4 de abril de 2025
Indicación para el montaje de los discos de embrague LuK Durante el montaje de un disco de embrague, tenga siempre en cuenta la posición de montaje. Por este motivo, en la mayoría de los discos de embrague hay una impresión o un grabado al lado del buje. Mediante este rótulo se puede determinar la posición de montaje del disco de embrague. La siguiente tabla muestra todas las inscripciones posibles y sus traducciones:
Por Aljocar 4 de abril de 2025
La muerte de dos bomberos en Alcorcón (Madrid) reabre el debate sobre la seguridad de las baterías en los eléctricos Las primeras investigaciones apuntan a que estalló una de las baterías de un Porsche Taycan durante un incendio en un garaje. Las baterías de los vehículos eléctricos vuelven a estar bajo sospecha. El incendio de un coche eléctrico en un garaje de Alcorcón terminó en tragedia con dos bomberos fallecidos y un tercero en estado muy grave por culpa de las llamas y varias deflagraciones. Según las primeras investigaciones, el fuego se desató tras estallar una de las baterías de un Porsche Taycan, poniendo de nuevo el foco sobre este tipo de vehículos y sus baterías. No en vano, desde diciembre de 2024 han ardido en Madrid, en este caso, en la capital, cuatro turismos 'enchufables' en tres diferentes incendios. El incidente de Alcorcón ocurrió en un aparcamiento subterráneo de un edificio de viviendas, según informa El Español, cuando el dueño del turismo, que se lo había comprado hace poco tras sufrir un ictus, entró en la rampa del garaje de la casa y le dio a algún botón sin querer. Las fuentes policiales consultadas sostienen que el conductor pudo chocar con alguna de las columnas del garaje. El propietario, alertado, llamó a los servicios de emergencia para avisar de que su Porsche estaba ardiendo. Los bomberos se trasladaron hasta el lugar y al tratar de apagar el fuego se vieron sorprendidos por la virulencia de llamas y varios explosiones. Precedentes que se repiten El asunto de los incendios de coches eléctricos no es nuevo. Sus baterías ya han generado polémica y ya se ha debatido, por ejemplo, en el Ayuntamiento de Madrid. Esta sucesión de incidentes no hace más que reabrir el debate de la seguridad de este tipo de vehículos, cuya movilidad depende de estas baterías de grandes dimensiones y que, generalmente, llevan componentes peligrosos o de alta inflamabilidad como el litio, mediante iones, u otros como aluminio, cobre, cobalto y el níquel, si bien estos dos últimos son cada vez menos frecuentes, pues las compañías están tratando de evitarlos tanto por su riesgo como por el impacto que su extracción tiene en el Medio Ambiente. En este sentido, en la capital se han registrado ya, al menos, tres fuegos con cuatro 'enchufables' implicados en los últimos meses. El último conocido en la capital fue el del jueves 20 de febrero, cuando ardió un coche estacionado el parking San Cayetano, en el barrio de Salamanca. Unos días antes, el 8 de febrero, se quemaron otros dos eléctricos en otro aparcamiento de la calle Marqués de Urquijo, en la zona de Moncloa-Argüelles. Previamente, aún en 2024, el 30 de diciembre, los bomberos sofocaron las llamas de un vehículo eléctrico aparcado en un parking público de la plaza de Colón. En ninguno de los tres sucesos hubo víctimas, hasta el fatídico suceso de Alcorcón. Fuente:Infotaller
Por Aljocar 1 de abril de 2025
Sistema de combustible de riel común (Common Rail): Tecnología y beneficios El sistema de inyección de combustible common rail es una tecnología avanzada que ha mejorado significativamente la eficiencia y el rendimiento de los motores de combustión interna. Aunque es más común en motores diésel, también se ha implementado en algunos motores de gasolina. 1. ¿Qué es el sistema de riel común? Es un sistema de inyección que utiliza un conducto compartido (riel) para distribuir el combustible a alta presión de manera uniforme a los inyectores. Esto permite una combustión más eficiente, reduciendo el consumo de combustible y las emisiones contaminantes. 2. Componentes principales Bomba de alta presión: Comprime el combustible hasta presiones extremadamente altas (hasta 2.500 bares). Riel común: Almacena y distribuye el combustible a alta presión. Inyectores electrónicos: Regulan la cantidad y el momento exacto de la inyección de combustible en la cámara de combustión. Unidad de control electrónico (ECU): Gestiona la inyección según la demanda del motor. Sensores: Monitorean presión, temperatura y otros parámetros para optimizar la inyección. 3. Beneficios del sistema Common Rail ✅ Mayor eficiencia: Optimiza la combustión y reduce el consumo de combustible. ✅ Menos emisiones: Disminuye partículas contaminantes y óxidos de nitrógeno (NOx). ✅ Reducción de ruido: La combustión es más suave, minimizando el sonido característico de los motores diésel. ✅ Flexibilidad en la inyección: Permite múltiples inyecciones por ciclo para un mejor rendimiento. 4. Aplicaciones Vehículos diésel modernos: Utilizado en automóviles y furgonetas. Transporte pesado: Presente en camiones y autobuses para mejorar eficiencia y reducir emisiones. Maquinaria industrial y agrícola: Implementado en equipos que requieren alta potencia y bajo consumo. 5. Desventajas ❌ Costo elevado: Sus componentes son más costosos que en sistemas tradicionales. ❌ Mantenimiento especializado: Requiere técnicos calificados y herramientas avanzadas. ❌ Sensibilidad al combustible: Funciona mejor con combustibles de alta calidad para evitar daños. 7. Recomendaciones de mantenimiento ✔️ Usar combustible de buena calidad. ✔️ Reemplazar los filtros de combustible periódicamente. ✔️ Realizar revisiones técnicas del sistema de inyección. ✔️ Evitar aditivos no recomendados por el fabricante. Gracias a su eficiencia y reducción de emisiones, el sistema de common rail sigue siendo una tecnología clave en la evolución de los motores modernos, ayudando a cumplir normativas como Euro 6 y mejorando la experiencia de conducción.
Más entradas....