¿Cómo funciona la batería de 12 voltios del coche?

Hasta la generalización de los móviles, la batería de 12 voltios del coche ha sido la batería «secundaria» (esto es, recargable) con la que todos hemos tenido más experiencia. De ella sabemos que es cúbica, pesada y que, por lo visto, está repleta de ácido sulfúrico. Y que debe de llevar plomo, porque siempre se refieren a ella con esa etiqueta. Pero… ¿cómo funciona, exactamente, la batería de 12 voltios del coche? Descubrirlo nos va a ayudar, también, a aprender mucho sobre ella, sus parámetros y mantenimiento.

Una de las primeras batería de plomo-ácido de Planché


1) Una batería con historia

Lo primero que debes saber es que la batería de plomo, o de ácido-plomo, es la batería recargable con más historia. La inventó el físico francés Gastón Planté en 1859, y todavía en la actualidad sigue siendo el tipo de batería recargable de la que más unidades se han fabricado. En su día, la batería de Planté era un dispositivo tan sofisticado que ni siquiera existían cargadores para recargarla… aunque la máquina de Gramme, magneto o dinamo se inventaría poco después.

Hay tres excelentes razones por las que la batería de plomo-ácido ha sido un éxito desde su concepción: su bajo coste, su elevada fiabilidad y su facilidad de construcción. Aunque, antes de disfrutarla, fue necesario «pulir algunas esquinas», de cara a alcanzar cifras decentes de prestaciones. Pero, de momento, vamos a analizar cómo es la batería de 12 voltios del coche, desde fuera y hacia dentro.

Hemos sido engañados… dentro de las baterías hay ¡más baterías!


2) Sorpresa: no existen las baterías de 12 voltios

Cuando uno escucha hablar de baterías de 12 voltios, o de 9 voltios, o de 4,5 voltios, y ve sus carcasas… espera que dentro haya, literalmente, UNA batería de esa tensión. Por desgracia, eso es imposible. Cada reacción química de tipo Red-Ox (así se denomina a aquellas que tienen lugar con intercambio de electrones, que son las que nos interesan de cara a construir una batería) tiene una tensión asociada. Y es imposible pasar de unos 4 voltios. De manera que no podemos hacer «una batería de 12 voltios»… salvo si conectamos, a escondidas y en serie, varias baterias de tensión inferior para dar lo que se conoce como «paquete de baterías».

Por eso, y en realidad, una batería de 12 voltios es un paquete de seis baterías (en adelante, y para distinguirlas de la propia batería, las llamaremos celdas) de plomo-acido, conectadas en serie, y con cada una de ellas entregando 2,1 voltios de tensión. En el pasado, antes de que las baterías fueran herméticas (esto es, «sin mantenimiento»), cada una de estas seis celdas se la denominaba «vaso», y contaba con un tapón para poder reponer su nivel de agua. Siguiendo la misma lógica, cuando la batería fallaba porque una de las celdas se deterioraba, la tensión caía de 12 a 10 voltios, y se decía que experimentaba un «vaso comunicado»; esto es, un cortocircuito en una celda.

3) Anatomía típica de una batería de 12 voltios

El interior de una batería de 12 voltios siempre tiene el mismo aspecto. Cuenta con los siguientes componentes:

  • Terminales: Uno para el positivo (cable rojo) y otro para el negativo (cable negro).
  • Carcasa: De plástico, dividida en seis cámaras independientes. Cada una va a constituir una celda o vaso.
  • Placas: Los elementos básicos de la celda, junto con el separador y el electrolito. Los explicamos en el siguiente apartado.
  • Válvula de seguridad: Tanto la sobrecarga como la sobredescarga de la batería puede generar pequeñas cantidades de hidrógeno gaseoso, de manera que se necesita una forma de escape del gas en caso de mal funcionamiento o utilización incorrecta.

Además, en el etiquetado de una batería de 12 voltios siempre vamos a encontrar tres parámetros clave (click aquí si buscas información sobre cómo elegir una batería):

  • Tensión: Obviamente, debe de ser 12 voltios. Camiones y embarcaciones suelen utilizar 24 voltios… pero son el doble de largas (porque tienen el doble de celdas) de manera que la confusión es muy difícil.
  • Intensidad máxima de descarga: Expresada en amperios (A). Junto con la tensión de la batería, nos indica la potencia máxima que puede proporcionar la batería de manera puntual. Por ejemplo, una batería de 300 A podría entregar puntualmente (durante el arranque, para entendernos) hasta 3.600 vatios de potencia. Es importante, al sustituir la batería, que este parámetro no sea inferior al recomendado por el fabricante.
  • Capacidad de la batería: Expresada en Ah o Amperios-hora. Al multiplicar por la tensión, nos hacemos una idea de la cantidad de energía almacenada en la batería. Por ejemplo, una batería de 100 Ah podría entregar 1,2 kWh de energía. Este parámetro puede resultar engañoso, porque la velocidad a la que se entrega esa energía (es decir, la potencia de descarga) afecta a la cantidad de energía que se puede obtener de una batería. En cualquier caso, cuando reemplaces tu batería, deberás decantarte por una que ofrezca una capacidad similar o superior a la recomendada por el fabricante. De lo contrario, el coche arrancará, pero acortarás la vida de la batería.

3) Anatomía típica de una celda

Las celdas de las batería de 12 voltios cuentan con los mismos elementos clave que cualquier otra celda. Tienen un par de colectores para la corriente (uno es el negativo, y el otro, el positivo) y, físicamente en contacto con estos tienen placas. La mitad de ellas están conectadas al polo negativo, donde se «producen» los electrones. Y la otra mitad está conectada al colector positivo, donde se «reciben» los electrones.

A las del polo negativo se las llama ánodo, y las del polo positivo se las llama cátodo. Todas las placas están sumergidas en un líquido llamado electrolito. En el caso de la batería de plomo-acido, se trata de una disolución acuosa de acido sulfúrico. Esta disolución no contiene sales y, en contra de lo que instintivamente puedas creer, no es conductora de la electricidad. Entre placas se coloca un «separador», que es una membrana porosa que impide el contacto físico entre ánodo y cátodo.

Como hemos explicado, la tensión de la celda viene dictada naturalmente por su química. En cuanto a la intensidad máxima (en amperios o A) que puede entregar, está determinada por el número de placas que tenga cada celda y la superficie de estas. La capacidad de la batería (en Amperios-hora o Ah) viene determinada por le número de placas. Como habrás deducido, las baterías más grandes ofrecen más capacidad e intensidad de descarga, y existe cierta relación lineal entre estos dos parámetros.

4) La batería de plomo… ¿es de plomo?

Ahora nos metemos de lleno en la «trastienda» química de la batería y su funcionamiento. Empezando por el nombre, todas las baterías suelen tener uno que identifica la clase de reacción química que tiene lugar en su interior. Nombres hay tantos como químicas. Tenemos las baterías alcalinas, las de mercurio, las de níquel, las de litio… estos nombres son términos técnicos que no describen del todo bien lo que ocurre dentro de la batería, pero nos sirven para entendernos. Y generalmente, hacen referencia al componente principal del ánodo de la batería, que es el elemento que se oxida para generar electricidad.

En el caso de una batería «de plomo», lo primero que tendríamos que subrayar es que el término técnico es «batería de plomo y ácido». Dentro de una de estas baterías, lo que encontramos son unas celdas en las que ocurren dos reacciones químicas. Por un lado, en el ánodo, o polo negativo, el plomo reacciona con ácido sulfúrico y se «oxida». La reacción se escribe como Pb + HSO4 → PbSO4 + H+ + 2e. Suena intimidante, pero lo único que nos interesa es ese término «+2e» Eso significa que suelta dos electrones. Al hacerlo, se crea una tensión, que es de 2,05 voltios por celda.

Por su parte, en el cátodo o polo positivo, comienza a querer producirse la siguiente reacción: PbO2 + HSO4 + 3H+ + 2e → PbSO4 + 2H2O. De nuevo un galimatías intimidante, pero esencialmente dice que, con dos electrones, el óxido de plomo del cátodo ( PbO2) se convierte en sulfato de plomo ( PbSO4).

En todo este proceso, el papel del ácido sulfúrico es de mero transportador de cargas. El polo negativo «suelta» un protón ( H+), y el positivo lo «recoge» y lo «casa» con un electrón que le llega por un cable. Por el camino, ese electrón ha hecho un trabajo. Por ejemplo, arrancar el coche.

Cuando llega el momento de recargar la batería, basta con proporcionar una corriente inversa a la que se genera naturalmente para que la reacción se invierta. Durante la recarga, el sulfato de plomo del ánodo vuelve a convertirse en plomo… y el sulfato de plomo del cátodo vuelve a convertirse en óxido de plomo.

A lo largo de la historia, la batería de plomo-ácido ha demostrado ser un gran invento. Ha servido para propulsar submarinos… y también para conseguir récords de velocidad como el de La Jamais Contente (arriba), que alcanzó los 100 km/h el 1 de mayo de 1899. No obstante, su característica ganadora es que se trata de una batería recargable que combina bajo coste con una potencia elevada.

Sin embargo, desde el punto de vista de la electro-movilidad, y por desgracia, las baterías de plomo-acido no ofrecen ningún futuro. Sus prestaciones no solo son inferiores a las de sus alternativas de iones de litio, sino que son claramente insuficientes para construir un automóvil eléctrico viable. De hecho, ese ha sido el motivo por el que hemos tardado en tener coches eléctricos.

Una batería de plomo-ácido puede acumular unos 25 Wh por kilo de peso. Eso es entre 4 y diez veces menos que las alternativas basadas en iones de litio. Podrían hacerse coches eléctricos con baterías de plomo… pero estaríamos hablando de baterías que pesarían, como mínimo, entre 2 y 3 toneladas.


Fuente: Autof

Por Aljocar 30 de julio de 2025
✅ Brazos de control (superior e inferior): Conectan la rueda al chasis del vehículo. Permiten el movimiento vertical de la suspensión sin alterar la geometría de la rueda. ✅ Bujes: Son piezas de goma o poliuretano que amortiguan vibraciones entre los brazos de control y el chasis. 🔸 Cuando se desgastan, generan ruidos, vibraciones y desalineación. ✅ Rótulas (superior, inferior e interior): Permiten que la suspensión se mueva verticalmente mientras gira la dirección. Son claves para una conducción suave y precisa. ✅ Amortiguador + resorte helicoidal: Absorben impactos del terreno y mantienen el contacto de la rueda con el pavimento. 🚨 ¿Qué síntomas indican fallos en bujes o brazos? ❌ Golpeteo metálico en baches o curvas ❌ Dirección imprecisa o volante que vibra ❌ Desgaste irregular de neumáticos ❌ Vehículo se “desvía” hacia un lado 💡 Dato curioso: Los bujes desgastados pueden alterar el alineado del vehículo y aumentar el desgaste de otras piezas como rótulas, neumáticos o amortiguadores.
Por Aljocar 30 de julio de 2025
Descubre cómo se genera la potencia que mueve tu coche 🚗💨 🧩 Partes clave de un motor de combustión interna: ✅ Pistón Sube y baja dentro del cilindro. Recibe la explosión del combustible y transfiere esa fuerza. ✅ Cámara de combustión Espacio donde se mezcla el aire y el combustible. Aquí ocurre la explosión 🔥. ✅ Válvulas 🔹 Admisión: deja entrar aire y combustible 🔹 Escape: deja salir los gases quemados Controladas por el árbol de levas y los balancines. ✅ Árbol de levas y balancines Abren y cierran las válvulas en el momento exacto. Los taqués y muelles ayudan a este movimiento. ✅ Biela Une el pistón con el cigüeñal y transmite el movimiento lineal del pistón en forma rotativa. ✅ Cigüeñal Convierte el movimiento de los pistones en energía rotatoria, que se transfiere a la caja y ruedas. ✅ Volante Ayuda a estabilizar y conservar la inercia del movimiento del motor. 🚨 Fallos comunes por mal mantenimiento: ❌ Pistón rayado por aceite sucio ❌ Segmentos desgastados = pérdida de compresión ❌ Válvulas dobladas por mala sincronización ❌ Ruido metálico por taqués o balancines flojos 💡 Dato curioso: Un motor de 4 tiempos puede girar más de 6,000 revoluciones por minuto, lo que significa que un pistón puede subir y bajar más de 100 veces por segundo 🤯
Por Alberto Gil Gago 30 de julio de 2025
El sistema de inyección multipunto AT-5101 es clave en los vehículos modernos, ya que optimiza el consumo de combustible y mejora el rendimiento del motor. Aquí te explicamos cómo trabaja cada componente que ves en el diagrama 🔍 Componentes principales del sistema: ✅ ECU (Unidad de Control Electrónico) ✅ MAF (Sensor de masa de aire) ✅ MAP (Sensor de presión absoluta del múltiple) ✅ CMP (Sensores de posición de árbol de levas) ✅ CKP (Sensor de cigüeñal) ✅ ECT (Sensor de temperatura del motor) ✅ OPS (Sensor de presión de aceite) ✅ Inyectores (uno por cilindro) ✅ Bobina de encendido ✅ Sensor de detonación ✅ Pedal del acelerador electrónico ⚙️ Funcionamiento básico paso a paso: 🌬️ El sensor MAF mide el flujo de aire que entra al motor 📏 El MAP ayuda a determinar la carga del motor 🌡️ El ECT reporta la temperatura del motor ⚡ La ECU recopila datos y determina la cantidad exacta de combustible a inyectar 💥 Los inyectores introducen combustible en cada cilindro individualmente 🔥 La bobina envía corriente a las bujías en el momento preciso 🧠 El sensor de detonación detecta explosiones anómalas y ajusta el encendido ⛽ El sistema regula mezcla y chispa para obtener máximo rendimiento y eficiencia 🔧 Ventajas del sistema multipunto: ✔️ Mejora la eficiencia del combustible ✔️ Reduce emisiones contaminantes ✔️ Mayor potencia con menos consumo ✔️ Respuesta más rápida del motor ✔️ Menor riesgo de detonaciones dañinas ✔️ Control electrónico inteligente en tiempo real 💡 Consejo: Mantén limpios los inyectores y asegúrate de que los sensores estén funcionando correctamente. Un solo sensor fallando puede alterar toda la inyección Para cualquier duda o aclaración, consulta con nuestros expertos.
Por Aljocar 29 de julio de 2025
Todos los puntos REPXPERT que obtengas del 1 de mayo al 31 de agosto, de productos LuK RepSet 2CT + LuK RepSet 2CT DMF, se MULTIPLICARÁN POR 2 ¡Descubre y disfruta de increíbles recompensas hoy mismo con la app REPXPERT! Promoción válida para los siguientes productos LuK: LuK RepSet 2CT Seco LuK RepSet 2CT Húmedo NEW LuK RepSet 2CT DMF Seco NEW LuK RepSet 2CT DMF Húmedo Cómo funciona: 1. Compra e instala LuK RepSet 2CT o LuK RepSet 2CT DMF. 2. Utiliza la aplicación móvil REPXPERT para escanear el código QR que viene en la caja de cada producto 3. Inmediatamente se te anotarán el doble de puntos REPXPERT en tu cuenta ¡No te lo pierdas! Sólo se duplicarán los puntos de los productos escaneados y canjeados entre 1.5.2025 y 31.8.2025 ambos inclusive. Ten en cuenta que el programa de puntos REPXPERT y su canjeo sólo esta disponible para talleres registrados en la web de REPXPERT. Más info: https://www.repxpert.es/es/explore/news/summer-bonus-camp Somos tu distribuidor LUK en León, consulta con nuestros expertos.
Por Aljocar 14 de julio de 2025
Filtron, marca de MANN+HUMMEL, muestra, en menos de dos minutos, los pasos a seguir para sustituir el filtro de habitáculo del BMW Serie 5 (G30, G31, F90). En este vídeo, los profesionales de The Mechanics siguen el paso a paso utilizando el modelo K 1428A-2x de FILTRON, un filtro con carbón activo que ayuda a eliminar gases nocivos y malos olores del interior del vehículo. 👉 Consulta las especificaciones técnicas y vehículos compatibles con nuestros expertos: 987347859
Por Aljocar 11 de julio de 2025
🛠️ Schaeffler REPXPERT Tips 🛠️ Atención al montaje incorrecto de los Rodamientos de Rueda 🔧👉 En este nuevo tip te contamos cómo instalar sin fallos todos los tipos de Rodamientos de Rueda del mercado. 👇👇👇👇👇 ¡Y síguenos en Facebook para no perderte ninguno de nuestros TIPS, hay un consejo nuevo cada martes a las 12h! ¿Quieres ver cómo sustituir un rodamiento de rueda de generación 3 en un VW Golf VI? No te pierdas este vídeo 🎥🎥🎥e.
Por Aljocar 23 de junio de 2025
Doble embrague húmedo de Valeo: una mejora de la experiencia de la conducción La transmisión de doble embrague ahora ofrece lo mejor de las transmisiones manuales y automáticas El aumento de la eficiencia del combustible, el rendimiento y el confort en la conducción son algunas de las principales prioridades en la industria automotriz. Esta necesidad ha impulsado el desarrollo de nuevas tecnologías en motores y transmisiones para responder a estos requisitos. El doble embrague húmedo (DWC) de Valeo responde tanto a las expectativas de los consumidores como a los objetivos de reducción de CO₂. El DWC mejora el confort de conducción al eliminar la interrupción del par motor durante el cambio de marchas, gracias a su rápida respuesta del sistema y estrategias de control eficientes. Es perfectamente adecuado para vehículos de alto par motor. El doble embrague húmedo de Valeo garantiza la gestión del par motor mediante dispositivos de control de presión de aceite en el componente, mientras que su diseño de flujo permite una alta refrigeración. Su rápida respuesta y control eficiente hacen que conducir sea un verdadero placer. Diseño premium para pares de 300 N.m a 600 N.m Reducción del tamaño axial (-6 mm). Mejora del 1% en CO₂ con el tipo de CSC doble. La disipación efectiva del calor requiere el uso de embragues húmedos en lugar de secos, típicos en aplicaciones de vehículos más comunes. Los embragues húmedos se caracterizan por una significativa disipación de potencia causada por el batido del embrague, la refrigeración y el micro deslizamiento. En pocas palabras: Mejoran el confort de conducción eliminando la interrupción del par motor. Tienen una respuesta rápida del sistema y son eficientes durante el cambio de marchas. Son adecuados para motores de alto par. Presentan una gran capacidad de disipación de calor. Mientras que las transmisiones manuales han permanecido relativamente sin cambios a lo largo de los años, las transmisiones automáticas, semiautomáticas y de variación continua (CVT) controladas electrónicamente se han vuelto cada vez más complejas, pero también más fáciles de usar que nunca. La transmisión de doble embrague ahora ofrece lo mejor de las transmisiones manuales y automáticas, y su popularidad está en aumento. Tecnologías del doble embrague húmedo Dentro del DWC se encuentran dos tipos de tecnologías: La primera tecnología es la del pistón, con las siguientes características principales: Arquitectura radial disponible para transferencia de par sin interrupciones. Amplio rango de aplicaciones: de 200 N.m a 500 N.m. Aplicable a vehículos híbridos. Solución de sistema disponible, incluyendo doble embrague, actuadores, amortiguadores, sistema de refrigeración y bomba de actuación. Presencia global para satisfacer las necesidades de los clientes. Y, por supuesto, soluciones de amortiguación de referencia para mayor confort. La segunda tecnología es el cilindro esclavo concéntrico doble: Tipo de arquitectura radial para aplicaciones en vehículos con tracción delantera. Arquitectura de tipo doble CSC para mayor eficiencia. Reducción de CO₂ de hasta un 1,5 % en comparación con el embrague húmedo de pistón. Optimización del espacio axial/radial, ideal para aplicaciones híbridas tipo P2. Contacto directo del doble CSC con el pistón del embrague: sin efecto centrífugo, sin pistón de equilibrio. Soluciones de sistema que incluyen doble embrague, actuadores, amortiguadores y bomba. Comprendiendo el doble embrague húmedo Una transmisión de doble embrague ofrece la funcionalidad de dos cajas de cambios manuales en una sola. En las transmisiones manuales convencionales, no hay un flujo continuo de potencia del motor a las ruedas. En cambio, la entrega de potencia cambia de “activada” a “desactivada” y de nuevo a “activada” durante el cambio de marcha, provocando un fenómeno conocido como “sacudida del cambio” o “interrupción del par”. El sistema de doble embrague, en cambio, consiste en dos embragues separados, que permiten que dos marchas estén engranadas al mismo tiempo. Una de las marchas transfiere el par motor mientras la siguiente ya está preseleccionada. Todo el proceso de cambio dura solo unas centésimas de segundo, sin interrupción del par y con una pérdida mínima de potencia. La unidad de control electrónico en la caja de cambios regula el sistema de doble embrague y la actuación de la transmisión. Esta unidad supervisa todos los parámetros relevantes como la velocidad, las revoluciones y la relación de marchas, y ajusta el cambio en función de la situación de conducción. Los sistemas de doble embrague combinan el confort de una transmisión automática con el manejo deportivo de una transmisión manual. El resultado es una aceleración más rápida, suave y una dinámica de cambio excelente. Un sistema de doble embrague puede utilizarse en todo tipo de turismos, especialmente en vehículos de alto rendimiento. Los paquetes de embrague se controlan mediante aceite a presión, que bloquea todos los paquetes en modo engranado. El DWC está compuesto por paquetes de discos de fricción y discos de acero para cada grupo de marchas. C1 (marchas impares) contiene: 3 discos de fricción. 4 discos de acero C2 (marchas pares) contiene 4 discos de fricción. 5 discos de acero. Soporte central Un componente clave en el conjunto es el soporte central del DWC. El DWC se monta sobre el conjunto de soporte central y se bloquea mediante un simple anillo de retención. Durante el proceso de montaje, es importante tener cuidado, ya que el soporte contiene diferentes segmentos entre las válvulas de aceite que se encargan de asegurar la correcta lubricación del soporte, los rodamientos y el eje rotativo. El circuito de aceite Los paquetes de embrague se controlan mediante aceite a presión, que bloquea el conjunto de discos de acero y forros de fricción cuando embraga una marcha. El circuito requiere varios componentes para cumplir esta función: Bomba de aceite mecánica o eléctrica. Galerías de aceite. Cámaras hidráulicas (pistones). Estanqueidad hidráulica. Solenoides que actúan como (válvulas de paso de aceite). Sistema de filtrado de aceite. El actuador de la bomba En promedio, la actuación requiere sólo 30 vatios de potencia eléctrica según el ciclo NEDC. Este bajo consumo no tiene un efecto significativo sobre el consumo de combustible, preservando así la alta eficiencia de las transmisiones manuales con sistemas de doble embrague. En la práctica, una estrategia de cambio inteligente puede ayudar a reducir el consumo real de combustible. Los actuadores del cambio integran un motor eléctrico. El motor de accionamiento eléctrico. Estos módulos son flexibles y pueden colocarse en cualquier parte de la transmisión. El bajo consumo de energía de la actuación garantiza que se mantenga una alta eficiencia. Solo se requieren 30 W para accionar la bomba. Todas estas características ayudan a reducir el consumo de combustible. Parte del Grupo Valeo, Valeo Service es el especialista mundial en postventa del automóvil: “Nuestra primera prioridad es cuidar de ti y de los vehículos de tus clientes (tanto turismos como vehículos industriales), mucho después de haber salido de la línea de producción. Ya seas fabricante de automóviles, distribuidor de repuestos, concesionario, taller o propietario de un vehículo, puedes estar seguro de que Valeo Service está a tu lado en más de 150 países”. Fuente; La Comunidad del Taller
Por Aljocar 23 de junio de 2025
Aquí tienes una guía con información útil y consejos prácticos sobre el medidor de masa de aire, un componente esencial en los vehículos con motor de combustión interna ste sensor mide la masa de aire que entra en el motor, y la unidad de control necesita ese dato para calcular con precisión la cantidad de combustible. A continuación, verás las indicaciones del portal Hella Tech World sobre cómo funciona, qué síntomas presenta cuando falla, qué puede provocar su avería y cómo revisarlo correctamente. 1. Funcionamiento del medidor de masa de aire El medidor de masa de aire se coloca entre el filtro de aire y el colector de admisión, y está compuesto por una carcasa tubular con rectificador de flujo, protección del sensor y un módulo de medición. Este módulo incorpora dos resistencias de película metálica sobre una membrana de cristal: RT (sensor de temperatura): mide la temperatura del aire aspirado. RS (sensor de caudal): detecta la cantidad de aire, enfriándose en función del caudal. La unidad de control ajusta la corriente que pasa por RS para mantener una diferencia constante de temperatura respecto a RT. Esa corriente es proporcional a la masa de aire que entra en el motor, y se utiliza para calcular la inyección de combustible adecuada. 2. Síntomas de un fallo en el sensor Cuando el medidor de masa de aire falla, pueden aparecer síntomas como: Paradas del motor o funcionamiento en modo emergencia. Testigo de avería del motor encendido en el cuadro de instrumentos. 3. Causas más comunes de avería Entre los motivos que pueden provocar un fallo están: Conexiones eléctricas defectuosas o sueltas. Elementos de medición dañados. Golpes o vibraciones que hayan afectado al sensor. Desplazamiento del sensor fuera de su posición de medición. 4. Cómo revisar el medidor Sigue estos pasos para una comprobación eficaz: Revisa el conector: Asegúrate de que está bien conectado y sin daños visibles. Inspecciona el sensor: Comprueba que no haya grietas ni deterioros en la carcasa. Examina los elementos de medición: Busca signos de rotura o contaminación. Mide el voltaje de alimentación: Verifica que llega la tensión adecuada al sensor. Comprueba el cableado: Revisa la continuidad entre el conector del sensor y el de la unidad de control (necesitarás el esquema eléctrico). El valor de resistencia debería ser cercano a 0 Ohm. Haz un diagnóstico electrónico: Si hay un fallo, la unidad de control lo registrará con un código de avería que puedes leer con un equipo de diagnosis. Fuente: La Comunidad del Taller
Por Aljocar 11 de junio de 2025
FABRICACIÓN ESPAÑOLA OBLIGATORIA EL 1 DE ENERO DE 2026 La baliza que pretende salvarte del atropello en las carreteras 'Sostraffic', la señalización que quiere salvar vidas en la carretera 'Sostraffic' es una alternativa más segura a la señalización de averías en carretera con triángulos. Una de estas medidas es la colocación de un dispositivo luminoso, tipo sirena, que se fijará en el techo del coche gracias a imanes de neodimio de alta adherencia. Esta señal es mucho más efectiva que los triángulos ya que su alcance es superior al kilómetro de distancia aumentando el mismo de noche, pudiendo ser percibido por el resto de conductores con mucha antelación logrando evitar de forma más eficiente el vehículo parado. Esta señal está aprobada por la DGT y homologada recientemente en el Laboratorio Central de Electrotecnia de Madrid. CONECTIVIDAD INCLUIDA HASTA 2038
Por Alberto Gil Gago 10 de junio de 2025
Presentación de "Confesiones"
Más entradas....