Doble embrague húmedo

Doble embrague húmedo de Valeo: una mejora de la experiencia de la conducción
La transmisión de doble embrague ahora ofrece lo mejor de las transmisiones manuales y automáticas
El aumento de la eficiencia del combustible, el rendimiento y el confort en la conducción son algunas de las principales prioridades en la industria automotriz. Esta necesidad ha impulsado el desarrollo de nuevas tecnologías en motores y transmisiones para responder a estos requisitos.
El doble embrague húmedo (DWC) de Valeo responde tanto a las expectativas de los consumidores como a los objetivos de reducción de CO₂. El DWC mejora el confort de conducción al eliminar la interrupción del par motor durante el cambio de marchas, gracias a su rápida respuesta del sistema y estrategias de control eficientes. Es perfectamente adecuado para vehículos de alto par motor.
El doble embrague húmedo de Valeo garantiza la gestión del par motor mediante dispositivos de control de presión de aceite en el componente, mientras que su diseño de flujo permite una alta refrigeración. Su rápida respuesta y control eficiente hacen que conducir sea un verdadero placer.
Diseño premium para pares de 300 N.m a 600 N.m
Reducción del tamaño axial (-6 mm).
Mejora del 1% en CO₂ con el tipo de CSC doble.
La disipación efectiva del calor requiere el uso de embragues húmedos en lugar de secos, típicos en aplicaciones de vehículos más comunes. Los embragues húmedos se caracterizan por una significativa disipación de potencia causada por el batido del embrague, la refrigeración y el micro deslizamiento.
En pocas palabras:
Mejoran el confort de conducción eliminando la interrupción del par motor.
Tienen una respuesta rápida del sistema y son eficientes durante el cambio de marchas.
Son adecuados para motores de alto par.
Presentan una gran capacidad de disipación de calor.
Mientras que las transmisiones manuales han permanecido relativamente sin cambios a lo largo de los años, las transmisiones automáticas, semiautomáticas y de variación continua (CVT) controladas electrónicamente se han vuelto cada vez más complejas, pero también más fáciles de usar que nunca.
La transmisión de doble embrague ahora ofrece lo mejor de las transmisiones manuales y automáticas, y su popularidad está en aumento.
Tecnologías del doble embrague húmedo
Dentro del DWC se encuentran dos tipos de tecnologías: La primera tecnología es la del pistón, con las siguientes características principales:
Arquitectura radial disponible para transferencia de par sin interrupciones.
Amplio rango de aplicaciones: de 200 N.m a 500 N.m.
Aplicable a vehículos híbridos.
Solución de sistema disponible, incluyendo doble embrague, actuadores, amortiguadores, sistema de refrigeración y bomba de actuación.
Presencia global para satisfacer las necesidades de los clientes.
Y, por supuesto, soluciones de amortiguación de referencia para mayor confort.
La segunda tecnología es el cilindro esclavo concéntrico doble:
Tipo de arquitectura radial para aplicaciones en vehículos con tracción delantera.
Arquitectura de tipo doble CSC para mayor eficiencia.
Reducción de CO₂ de hasta un 1,5 % en comparación con el embrague húmedo de pistón.
Optimización del espacio axial/radial, ideal para aplicaciones híbridas tipo P2.
Contacto directo del doble CSC con el pistón del embrague: sin efecto centrífugo, sin pistón de equilibrio.
Soluciones de sistema que incluyen doble embrague, actuadores, amortiguadores y bomba.
Comprendiendo el doble embrague húmedo
Una transmisión de doble embrague ofrece la funcionalidad de dos cajas de cambios manuales en una sola.
En las transmisiones manuales convencionales, no hay un flujo continuo de potencia del motor a las ruedas. En cambio, la entrega de potencia cambia de “activada” a “desactivada” y de nuevo a “activada” durante el cambio de marcha, provocando un fenómeno conocido como “sacudida del cambio” o “interrupción del par”.
El sistema de doble embrague, en cambio, consiste en dos embragues separados, que permiten que dos marchas estén engranadas al mismo tiempo. Una de las marchas transfiere el par motor mientras la siguiente ya está preseleccionada.
Todo el proceso de cambio dura solo unas centésimas de segundo, sin interrupción del par y con una pérdida mínima de potencia. La unidad de control electrónico en la caja de cambios regula el sistema de doble embrague y la actuación de la transmisión. Esta unidad supervisa todos los parámetros relevantes como la velocidad, las revoluciones y la relación de marchas, y ajusta el cambio en función de la situación de conducción.
Los sistemas de doble embrague combinan el confort de una transmisión automática con el manejo deportivo de una transmisión manual. El resultado es una aceleración más rápida, suave y una dinámica de cambio excelente.
Un sistema de doble embrague puede utilizarse en todo tipo de turismos, especialmente en vehículos de alto rendimiento. Los paquetes de embrague se controlan mediante aceite a presión, que bloquea todos los paquetes en modo engranado. El DWC está compuesto por paquetes de discos de fricción y discos de acero para cada grupo de marchas.
C1 (marchas impares) contiene:
3 discos de fricción.
4 discos de acero
C2 (marchas pares) contiene
4 discos de fricción.
5 discos de acero.
Soporte central
Un componente clave en el conjunto es el soporte central del DWC. El DWC se monta sobre el conjunto de soporte central y se bloquea mediante un simple anillo de retención. Durante el proceso de montaje, es importante tener cuidado, ya que el soporte contiene diferentes segmentos entre las válvulas de aceite que se encargan de asegurar la correcta lubricación del soporte, los rodamientos y el eje rotativo.
El circuito de aceite
Los paquetes de embrague se controlan mediante aceite a presión, que bloquea el conjunto de discos de acero y forros de fricción cuando embraga una marcha.
El circuito requiere varios componentes para cumplir esta función:
Bomba de aceite mecánica o eléctrica.
Galerías de aceite.
Cámaras hidráulicas (pistones).
Estanqueidad hidráulica.
Solenoides que actúan como (válvulas de paso de aceite).
Sistema de filtrado de aceite.
El actuador de la bomba
En promedio, la actuación requiere sólo 30 vatios de potencia eléctrica según el ciclo NEDC. Este bajo consumo no tiene un efecto significativo sobre el consumo de combustible, preservando así la alta eficiencia de las transmisiones manuales con sistemas de doble embrague.
En la práctica, una estrategia de cambio inteligente puede ayudar a reducir el consumo real de combustible.
Los actuadores del cambio integran un motor eléctrico.
El motor de accionamiento eléctrico. Estos módulos son flexibles y pueden colocarse en cualquier parte de la transmisión.
El bajo consumo de energía de la actuación garantiza que se mantenga una alta eficiencia.
Solo se requieren 30 W para accionar la bomba.
Todas estas características ayudan a reducir el consumo de combustible.
Parte del Grupo Valeo, Valeo Service es el especialista mundial en postventa del automóvil: “Nuestra primera prioridad es cuidar de ti y de los vehículos de tus clientes (tanto turismos como vehículos industriales), mucho después de haber salido de la línea de producción. Ya seas fabricante de automóviles, distribuidor de repuestos, concesionario, taller o propietario de un vehículo, puedes estar seguro de que Valeo Service está a tu lado en más de 150 países”.
Fuente; La Comunidad del Taller

¡Lo que NADIE te dice sobre el anticongelante o refrigerante! 🚗🔥 Muchos conductores creen que el anticongelante dura para siempre, pero la verdad es que se convierte en veneno para tu motor si no lo cambias a tiempo. 😱 Cuando no lo sustituyes: ❌ Se forman óxidos y sedimentos que corroen el radiador. ❌ Puede tapar conductos internos y provocar sobrecalentamiento. ❌ Arruina la bomba de agua y hasta puede reventar la junta. ❌ ¡En casos extremos tu motor puede quedar inservible! 💸 🔧 ¿Cada cuánto cambiarlo? La mayoría de fabricantes recomienda sustituirlo entre cada 2 a 5 años o entre 40,000 y 60,000 km. Después de ese tiempo, el anticongelante pierde sus aditivos protectores y en lugar de cuidar, destruye tu motor. 👉 No esperes a que tu coche te avise con una alarma roja. El anticongelante es asequible, pero un motor nuevo no. Consulta con nuestros expertos, el plazo de tu vehículo.

El motor de combustión interna de cuatro tiempos es el más común en automóviles y motocicletas. Su funcionamiento se basa en un ciclo repetitivo de admisión, compresión, potencia y escape, que permite transformar la energía química del combustible en movimiento mecánico. ✔️ Etapas del ciclo: 1️⃣ Admisión El pistón desciende y aspira la mezcla de aire y combustible. La válvula de admisión se abre. 2️⃣ Compresión El pistón sube y comprime la mezcla dentro de la cámara de combustión. Ambas válvulas permanecen cerradas. 3️⃣ Potencia (explosión) La bujía enciende la mezcla comprimida. La explosión empuja el pistón hacia abajo, generando la fuerza que mueve el cigüeñal. Las válvulas permanecen cerradas. 4️⃣ Escape El pistón sube expulsando los gases quemados. La válvula de escape se abre para liberar los residuos. ❌ Un mal funcionamiento en cualquiera de estas etapas puede causar pérdida de potencia, aumento de consumo y emisiones contaminantes. Dato curioso : El ciclo completo se llama “Otto”, en honor a Nikolaus Otto, quien lo desarrolló en 1876. Este principio sigue siendo la base de la mayoría de motores actuales.

El Corazón del Sistema de Enfriamiento La bomba de agua es la encargada de mantener en circulación el refrigerante a través del motor y el radiador, evitando que el motor se sobrecaliente. 📌 Partes principales Polea de transmisión: Conectada por correa al cigüeñal, mueve la bomba. Impulsor: Aspa interna que empuja el refrigerante. Cojinetes: Permiten el giro suave del eje. Sello mecánico: Evita fugas de refrigerante. Entrada y salida: Dirigen el flujo del refrigerante entre radiador y bloque de cilindros. ⚙️ Funcionamiento ✔️ La polea gira gracias a la correa del motor. (en algunos casos, lo mueve la correa de servicios) ✔️ El impulsor succiona refrigerante desde el radiador. ✔️ El líquido se envía hacia el bloque de cilindros para absorber el calor. ✔️ Finalmente, vuelve al radiador para enfriarse y repetir el ciclo. 🔧 Fallos comunes ❌ Fugas de refrigerante → sello dañado. ❌ Ruidos fuertes → cojinetes desgastados. ❌ Sobrecalentamiento → impulsor roto o bomba atascada. ❌ Correa dañada → la bomba deja de funcionar. ⭐ Importancia Sin una bomba de agua en buen estado, el motor puede recalentarse en pocos minutos, provocando daños graves como junta de culata quemada o incluso motor fundido. 📖 Dato curioso Algunas bombas modernas son eléctricas, controladas por la ECU, lo que mejora la eficiencia y reduce el consumo de combustible

(Étienne Lenoir, 1860 / Robert Bosch, 1902) – Chispa pequeña, impacto enorme. En 1860, el ingeniero belga Étienne Lenoir presentó uno de los primeros motores de combustión interna y con él, un dispositivo fundamental: la bujía, capaz de generar la chispa que enciende la mezcla de aire y combustible. Aunque su invención inicial fue rudimentaria, abrió el camino para el desarrollo de los motores modernos. Décadas después, en 1902, el alemán Robert Bosch perfeccionó la bujía con un diseño mucho más confiable y duradero, logrando que los motores fueran más eficientes y seguros. Gracias a esta mejora, los automóviles pudieron popularizarse, y la bujía se convirtió en un componente indispensable para la industria automotriz durante más de un siglo. 🔧 Una pieza pequeña, pero con un papel gigantesco en el rugido de los motores.

Clave en la Transmisión El eje homocinético transmite la potencia de la caja de cambios a las ruedas delanteras (en coches de tracción delantera) o traseras (en algunos 4x4), permitiendo que estas giren y se muevan hacia arriba y abajo con la suspensión sin perder fuerza. 📌 Partes principales Eje homocinético completo: Une transmisión con ruedas. Juntas homocinéticas: Permiten que el eje funcione en diferentes ángulos. Guardapolvos de goma: Protegen las juntas, manteniendo la grasa en su interior y evitando que entre suciedad. ⚙️ Funcionamiento ✔️ El eje transmite el par motor. ✔️ Las juntas permiten flexibilidad en giros y desniveles. ✔️ El guardapolvos mantiene la lubricación interna. 🔧 Fallos comunes ❌ Guardapolvos roto → fuga de grasa y entrada de polvo/agua. ❌ Juntas homocinéticas dañadas → golpeteo al girar en curvas. ❌ Vibraciones en carretera → desgaste en el eje. ⭐ Importancia Mantener en buen estado los guardapolvos evita reparaciones costosas del eje. Un simple desgarro puede terminar en la necesidad de reemplazar toda la junta o incluso el eje completo. 📖 Dato curioso El término “homocinético” significa velocidad constante, ya que estas juntas permiten que la rueda gire a la misma velocidad que el eje de transmisión, incluso en ángulos extremos.

La suspensión es el conjunto de piezas que conecta las ruedas con el chasis y permite que el vehículo absorba las irregularidades del camino, ofreciendo comodidad, estabilidad y seguridad. 🔧 Principales componentes (según la imagen): Brazo de control superior e inferior: mantienen la alineación de la rueda y su movimiento vertical. Rótulas (superior e inferior): permiten el giro y movimiento de la suspensión sin rigidez. Resorte helicoidal: soporta el peso del vehículo y absorbe impactos. Amortiguador: controla el rebote del resorte y brinda estabilidad. Buje del brazo de control: reduce vibraciones y ruidos, dando flexibilidad. Enlace estabilizador: conecta la barra estabilizadora, reduciendo el balanceo en curvas. Brazo tensor: ayuda a mantener la estabilidad en la dirección y frenadas. ✅ Funciones de la suspensión ✔️ Absorber baches e irregularidades del terreno. ✔️ Mantener contacto constante de las ruedas con el suelo. ✔️ Mejorar la estabilidad y el control en curvas. ✔️ Aumentar la seguridad y comodidad del conductor y pasajeros. ⚠️ Síntomas de fallos en la suspensión Golpeteos o ruidos metálicos al pasar baches. Dirección inestable o vehículo que se va a un lado. Desgaste irregular de los neumáticos. Excesivo rebote después de un bache. 📌 Dato curioso: Un amortiguador en mal estado aumenta hasta un 35% la distancia de frenado, incluso si los frenos están en buen estado.

El aire acondicionado automotriz mantiene el habitáculo fresco, seco y confortable, regulando la temperatura y eliminando la humedad. Su funcionamiento se basa en un ciclo cerrado de compresión y expansión del gas refrigerante. ⚙️ Componentes principales Compresor: comprime el gas refrigerante y lo envía a presión hacia el condensador. Condensador: enfría el gas caliente y lo convierte en líquido. Válvula de expansión térmica: regula el paso del refrigerante líquido hacia el evaporador. Evaporador: absorbe el calor del aire del habitáculo, generando aire frío. Bulbo sensor: controla la temperatura para evitar congelamiento. Ventilador: impulsa el aire frío dentro del coche. ⚠️ Posibles fallos comunes ✔️ Pérdida de gas refrigerante por fugas. ✔️ Compresor averiado o con falta de lubricación. ✔️ Condensador obstruido con suciedad. ✔️ Válvula de expansión bloqueada. ✔️ Evaporador húmedo que provoca malos olores. 🔧 Soluciones y recomendaciones ✔️ Revisar y sellar fugas en las líneas de refrigerante. ✔️ Realizar mantenimiento al compresor y al condensador. ✔️ Cambiar el filtro de habitáculo regularmente. ✔️ Cargar gas refrigerante con equipo especializado. ✔️ Mantener limpio el sistema para evitar humedad y hongos. 💡 Dato curioso El sistema de aire acondicionado no solo enfría: en climas fríos ayuda a desempañar los cristales en segundos, garantizando mayor seguridad en la conducción. 👀❄️

🚗 Tipos de Humo en el Escape y qué significa cada uno ⚠️ El humo que sale del escape es un síntoma directo del estado del motor. Su color y densidad pueden indicar desde un problema menor hasta una avería grave. ⚙️ Tipos de humo y su diagnóstico Humo blanco fino ☁️ 🔹 Normal en arranques en frío. 🔹 Puede indicar condensación de vapor de agua. Humo blanco espeso ❄️ 🔹 Señal de que el motor está quemando refrigerante. 🔹 Generalmente causado por una junta de culata dañada o fisuras en el bloque. Humo azul 🔵 🔹 Indica quema de aceite dentro de la cámara de combustión. 🔹 Puede deberse a anillos de pistón gastados, sellos de válvulas dañados o guía de válvulas con fuga. Humo negro ⚫ 🔹 Indica una mezcla de combustible demasiado rica (exceso de gasolina o diésel). 🔹 Relacionado con inyectores defectuosos, filtro de aire sucio o sensores MAF/MAP dañados. ⚠️ Posibles consecuencias ✔️ Pérdida de potencia. ✔️ Aumento en el consumo de combustible y aceite. ✔️ Sobrecalentamiento y daños graves en el motor. ✔️ Fallo en la prueba de emisiones contaminantes. 🔧 Soluciones y recomendaciones ✔️ Revisar estado de la junta de culata si hay humo blanco espeso. ✔️ Sustituir sellos de válvulas o anillos de pistón si hay humo azul. ✔️ Limpiar o reemplazar inyectores y filtros si aparece humo negro. ✔️ No ignorar cambios en el humo, ya que es la “alarma visual” del motor. 💡 Dato curioso Un motor en buen estado no debería producir humo visible en condiciones normales, excepto un poco de vapor al encender en frío.

El sistema de embrague hidráulico reemplaza los cables mecánicos por un circuito de fluido a presión, logrando un accionamiento más suave, preciso y duradero. Es muy común en vehículos modernos por su fiabilidad y menor desgaste. 🔹 Componentes principales: ✔️ Pedal del embrague → inicia el proceso al ser presionado por el conductor. ✔️ Cilindro maestro → transforma la fuerza mecánica del pedal en presión hidráulica. ✔️ Depósito de líquido → almacena el fluido especial para embrague/frenos. ✔️ Cilindro esclavo → recibe la presión y empuja la horquilla de desembrague. ✔️ Horquilla de desembrague → transmite el movimiento al cojinete. ✔️ Cojinete de desembrague → desacopla el disco del embrague del volante motor. ⚡ Ventajas del sistema hidráulico: ✔️ Menor esfuerzo al pisar el pedal. ✔️ Desgaste más uniforme y menos mantenimiento. ✔️ Mayor precisión en el acoplamiento del embrague. ✔️ Respuesta más rápida y confiable. ⚠️ Síntomas de fallos comunes: Pedal de embrague esponjoso o muy duro 🦶. Dificultad para meter los cambios 🚨. Pérdida de líquido hidráulico o manchas en el suelo 💧. Ruidos metálicos al desembragar 🔊. 🛠️ Posibles soluciones: ✔️ Revisar el nivel de líquido en el depósito. ✔️ Purgar el sistema para eliminar aire en las líneas. ✔️ Sustituir cilindro maestro/esclavo si hay fugas. ✔️ Revisar y reemplazar el cojinete de desembrague en caso de ruido. 💡 Dato curioso : El embrague hidráulico funciona con un principio muy similar al sistema de frenos: aprovecha la incomprensibilidad del líquido para transmitir fuerza sin pérdida de energía.

El sistema de refrigeración es vital para mantener la temperatura adecuada del motor, evitando sobrecalentamientos y daños graves. Sus principales elementos trabajan en conjunto para regular el calor generado durante la combustión. ⚙️ Componentes principales Depósito de expansión 🧴 Almacena el refrigerante y permite verificar niveles de forma segura. Radiador 🌡️ Enfría el refrigerante mediante el flujo de aire. Suele presentar fugas en las uniones laterales. Termostato 🔧 Regula el paso del refrigerante según la temperatura, permitiendo que el motor alcance rápidamente su temperatura óptima. Ventiladores eléctricos 💨 Se activan cuando la temperatura sube o al encender el aire acondicionado, ayudando a enfriar el radiador. Mangueras y conexiones 🔗 Transportan el refrigerante entre los diferentes componentes. ❌ Fallos comunes Fugas en el radiador o mangueras → pérdida de refrigerante. Termostato trabado → sobrecalentamiento o motor frío constante. Ventiladores dañados → el motor se calienta en tráfico o clima cálido. Depósito de expansión roto → fugas y baja presión del sistema. ✔️ Recomendaciones Revisar el nivel de refrigerante semanalmente. Cambiar el líquido refrigerante cada 40.000 – 50.000 km. Sustituir el termostato y las mangueras en mantenimientos mayores. Usar siempre refrigerante recomendado, nunca agua, ya que oxida el sistema. 📌 Importancia Un sistema de refrigeración en mal estado puede causar desde pérdida de potencia hasta un daño total del motor por sobrecalentamiento. 🤓 Dato curioso El refrigerante no solo controla la temperatura, también lubrica la bomba de agua y evita la corrosión interna en el bloque y radiador.